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Abstract

The objective is to summarize the current use of artificial intelligence (AI) in ob-

stetric ultrasound. PubMed, Cochrane Library, and ClinicalTrials.gov databases

were searched using the following keywords “neural networks”, OR “artificial in-

telligence”, OR “machine learning”, OR “deep learning”, AND “obstetrics”, OR

“obstetrical”, OR “fetus”, OR “foetus”, OR “fetal”, OR “foetal”, OR “pregnancy”, or

“pregnant”, AND “ultrasound” from inception through May 2022. The search was

limited to the English language. Studies were eligible for inclusion if they described

the use of AI in obstetric ultrasound. Obstetric ultrasound was defined as the

process of obtaining ultrasound images of a fetus, amniotic fluid, or placenta. AI was

defined as the use of neural networks, machine learning, or deep learning methods.

The authors’ search identified a total of 127 papers that fulfilled our inclusion

criteria. The current uses of AI in obstetric ultrasound include first trimester

pregnancy ultrasound, assessment of placenta, fetal biometry, fetal echocardiog-

raphy, fetal neurosonography, assessment of fetal anatomy, and other uses

including assessment of fetal lung maturity and screening for risk of adverse

pregnancy outcomes. AI holds the potential to improve the ultrasound efficiency,

pregnancy outcomes in low resource settings, detection of congenital malforma-

tions and prediction of adverse pregnancy outcomes.

Key points

What is already known about this topic?

� The development of artificial intelligence (AI) in obstetric ultrasound is currently in its in-

fancy, as fetal ultrasound poses a number of unique challenges including the mobility of the

fetus, the developing fetal anatomy, the requirement to obtain specific planes for diagnosis,

which can be both difficult to obtain and limited by fetal positioning and maternal body

habitus.

What does this study add?

� This is the first scoping literature review of AI in obstetric ultrasound. We have provided a

comprehensive overview of the current capabilities, challenges and potential future uses of

AI in obstetric ultrasound.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.

1176 - Prenatal Diagnosis. 2023;43:1176–1219. wileyonlinelibrary.com/journal/pd

https://doi.org/10.1002/pd.6411
https://orcid.org/0000-0002-2752-4061
mailto:horganr@evms.edu
http://ClinicalTrials.gov
https://orcid.org/0000-0002-2752-4061
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/pd
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpd.6411&domain=pdf&date_stamp=2023-07-28


� AI holds the potential to improve the ultrasound efficiency, pregnancy outcomes in low

resource settings, detection of congenital malformations and prediction of adverse preg-

nancy outcomes.

1 | INTRODUCTION

Antenatal ultrasound examination is the primary mode of imaging in

pregnancy for assessment of the fetus. Accurate diagnosis of major

fetal malformations, growth disorders and placental abnormalities

allows for timely and appropriate pregnancy management. Obstetric

ultrasound has several challenges, including its operator dependency,

and its steep learning curve. Furthermore, access to adequately

trained personnel and equipment is limited in low resource settings.

Artificial intelligence (AI) is the ability of computer programs to

perform processes associated with human intelligence, such as

reasoning, learning, adaptation, sensory understanding and interac-

tion.1 Machine learning is a set of powerful computational tools that

train models on descriptive patterns obtained from human inference

rules.2 A major limitation of machine learning is that it relies heavily

on statistical insights and thus can be resource intense, requiring

labeling of large volumes of images to train a model. Deep learning is

a branch of machine learning that utilizes convolutional neural net-

works (CNNs). CNNs use principles from linear algebra to provide a

scalable approach to image classification and object recognition and

have the ability to attain a high level of performance with limited

training samples.2

The use of AI in the field of radiology has considerably developed

in recent years, particularly in the diagnosis of liver, thyroid and

breast diseases.3–7 The development of AI in obstetric ultrasound is

currently in its infancy, as fetal ultrasound poses a number of unique

challenges; the mobility of the fetus, the developing fetal anatomy,

the requirement to obtain specific planes for diagnosis which can be

both difficult to obtain and limited by fetal positioning and maternal

body habitus. Fetal factors such as speckle noise, occlusion of

boundaries and other artifacts can also affect intelligent detection

and measurement.8–11 We chose to conduct a scoping review of AI in

obstetric ultrasound due to the heterogeneity of available studies, to

allow us to identify research conduct in the field, and to identify

current knowledge gaps. Our primary objective was to summarize the

current use of AI in obstetric ultrasound.

2 | METHODS

This scoping review was performed according to the Preferred

Reporting Items for Systematic Reviews and Meta‐Analyses
(PRISMA) statement specific to scoping reviews.12 A literature

search was conducted using Pubmed, Clinicaltrials.gov and the

Cochrane library from inception through May 2022. Studies eligible

for inclusion were identified using the following search strategy:

“neural networks” OR “artificial intelligence” OR “machine learning”

OR “deep learning” OR “transformer model” AND “obstetrics” OR

“obstetrical” OR “fetus” OR “foetus” OR “fetal” OR “foetal” OR

“pregnancy” or “pregnant” AND “ultrasound.” The search was limited

to the English language. In addition, the reference section of each

included article was reviewed to assess additional articles eligible for

inclusion.

Two authors (R.H., L.N.) independently screened all abstracts to

assess eligibility for inclusion. Studies deemed potentially relevant

were then full‐text reviewed by both authors (R.H., L.N.). Studies

were eligible for inclusion if they described the use of AI in obstetric

ultrasound. For the purpose of this scoping review, obstetric ultra-

sound was defined as the process of obtaining ultrasound images of a

fetus, amniotic fluid, or placenta. AI was defined as the use of neural

networks, machine learning, or deep learning methods. All study

types were eligible for inclusion, including observational studies,

cohort studies, randomized control trials, quantitative, qualitative

and mixed‐methods studies. Exclusion criteria included expert opin-

ions or review articles, use of semi‐automated systems requiring

physician or sonographer input, and studies which described

machine‐learning methods to analyze numeric data previously ob-

tained using ultrasound.

Data extraction was performed using a standardized data

abstraction tool designed for this study. For all studies eligible for

inclusion, the following data were extracted: number of included

study participants, inclusion criteria, primary outcome, the type of AI

used, the description of AI method and summary of results. Data

were tabulated using Microsoft Excel and summarized using a

narrative review and descriptive statistics.

3 | RESULTS

A total of 127 papers fulfilled our inclusion criteria (Figure 1: PRISMA

flowchart). Eleven studies focused on AI in the first trimester

(Table 1). Three studies focused on the automated detection and

measurement of nuchal translucency.13–15 Three studies focused on

the detection and measurement of the gestational sac in the first

trimester.16–18 Three studies focused on the detection of the mid‐
sagittal plane of the fetus, with one study focusing on 2D ultra-

sound19 and two studies on 3D ultrasound.20,21 One study focused on

three‐dimensional ultrasound in the first trimester to measure fetal

biometry and to detect the presence of fetal limbs22 and the final

study focused on segmentation and measurement of the cerebral

cortex from 2D images.23

Eight studies focused on AI for assessment of the placenta

(Table 2). Three studies focused on deep learning methods for

automatic segmentation of the placenta, with two of these studies
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focusing on 3D ultrasound data.24–26 Looney et al. evaluated the

clinical utility of placental volume by assessing first trimester

placental volumes for the prediction of small for gestational age

(SGA) neonates at birth.24 The authors found that the receiver‐
operating characteristics curves for the log placental volume

(MoMs) calculated by the fully automated convoluted neural network

(OxNNet) and the real world technique to predict SGA were almost

identical at 0.65 (95% CI 0.61–0.69) for OxNNet and 0.65 (95% CI

0.61–0.70) for the ground‐truth.24 One study each focused on

categorization of the placenta as normal, low‐lying or placenta pre-
via,27 automatic detection of placental location from ultrasound

sweeps obtained from non‐specialist sonographers,28 automated

staging of placental maturity29 and automated detection of placental

lacunae.30 The final study by Gupta et al. compared placental quan-

titative image texture throughout pregnancy in patients with hy-

pertensive disorders to normotensive pregnancies with normal

outcome, with placentas categorized from placental images using

deep learning methods.31 The authors found that sensitivity and

specificity for abnormal placental image texture were 70.6% and

76.6% in the first trimester, 60.4% and 73.3% in the second trimester,

and 83.5% and 83.5% in the third trimester for the development of

hypertensive disorders.

Forty‐seven studies focused on the use of AI for the assessment
of fetal biometry (Table 3). Ten studies assessed automated mea-

surement of the fetal abdominal circumference (AC), femur length

(FL), head circumference and biparietal diameter.8,32–40 Arroyo et al.

focused on deep learning to assess fetal presentation and placental

location, in addition to assessment of fetal biometry for estimation of

gestational age in the third trimester.33 Twenty studies focused on

the automation of fetal head measurements only with automated

detection of the correct scanning plane and automated measure-

ments of various head and intracranial structures.9–11,41–57 Studies

by both Pluym and Grandjean used 3D head volumes for obtaining

automated measurements. One study assessed automated analysis of

fetal brain morphology on standard cranial ultrasound sections to

estimate the gestational age in second and third trimester fetuses,

compared with standard fetal biometry using a CNN with supervised

learning based on previously labeled images.58 Five studies assessed

deep learning for automated measurement of the FL only59–63 and

two studies assessed automated measurement of AC only.64,65 There

F I GUR E 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses) flow diagram. [Colour figure can be viewed at

wileyonlinelibrary.com]
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TAB L E 1 First trimester studies.

Author

year

Number of

patients Inclusion criteria Description of artificial intelligence Objective Results

Gofer 2021 56 fetuses 12–14 weeks, no

major CNS

anomalies on 1st

trimester

ultrasound

Two image segmentation methods

processed high‐resolution fetal

brain images obtained during the

NT scan: “Statistical region

Merging” and “Trainable Weka

Segmentation” measurement of the

fetal cerebral cortex in original and

processed images served to

evaluate the performance of the

algorithms

To evaluate the feasibility

of ML tools for

segmenting and

classifying first‐
trimester fetal brain

ultrasound images

A mean absolute

percentage error of

fetal cerebral cortex

measurement of

1.71% � 0.59 SD was

observed and

performance was

similar in fetuses with

normal versus

abnormal NT

measurements

Tsai 2020 218 patients 11–13 weeks,

healthy patients,

singleton

pregnancies

The authors developed a system using

deep learning in 2 stages

To propose a framework

that would allow the

automated precise

detection of middle

sagittal plane on 3D

ultrasound

The four metrics exhibited

no significant

differences in five‐fold
cross‐validation when

comparing automated

and manual

assessment. In the

automatic system

results, 98.6%

(n = 215) had

Euclidean distances

<0.05. The authors
found that the

automatic system was

two times faster than a

semi‐automated
approach

The 1st stage is to find a seed point for

mid sagittal point followed by the

use of generative adversarial

network for mid sagittal plane

detection in 3D ultrasound scans.

The authors compared an

automated and semi‐automated
system to manual measurements by

an expert

Ryou 2019 65 patients First trimester (11–

14 weeks),

healthy

pregnancies

A deep learning and image processing

method was developed for

segmentation of the fetus, to detect

plane orientation, to localize and

estimate fetal biometry and to

identify fetal limbs

To propose a new

automated system for

first trimester 3D

ultrasound

This automated method

came close to human

expertise in 3D

ultrasound assessment

Sciortino

2017

12 patients,

382

random

frames

11–13 weeks Wavelet and multi‐resolution analyses

were used for detection of the NT

region through identification of the

jawbone and then measurement of

the NT

To propose a method for

automatic detection

and measurement of

the NT

True positive rate: 99.95%

for nuchal area

detection and 64% for

measurements

Nie 2016 346 3D

ultrasound

images

from 204

patients

11–13 + 6 weeks A deep belief network was built to

detect the fetal head from 3D US

data using an enhanced circle

detection method for detection of

the size and position of the fetal

head. A model was then constructed

with six parameters for the

detection of the sagittal plane

To propose an automatic

technique for detecting

the sagittal plane on

3D ultrasound

The results showed that

the plane had a small

distance error of

<4 mm 88.6% of the

time and an angle error

of <20° in 71% of the

time with overall

accuracy of 91.62%

Sciortino

2015

3000 frames 11–13 weeks A wavelet analysis and neural network

was developed to detect the

jawbone and radial analysis was

developed to identify the choroid

plexus to enable detection of the

mid‐sagittal plane

To propose a new method

for automated

identification of the

mid‐sagittal sections in
first trimester

ultrasound

The results were as follows

(%):

True positive: 87.26

True negative: 94.98

Accuracy: 91.12

(Continues)
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were four studies assessing correct detection of the fetal abdominal

standard plane (FASP) using AI66–69 and five studies assessed various

combinations of two or more fetal biometry measurements.70–74

Ten studies focused on the use of AI in fetal cardiac imaging

(Table 4). Sakai et al. developed a deep learning‐based explainable

representation to visualize the detection of substructures of the

heart in a 2D screening video and calculated an abnormality score by

measuring the deviation from normal. This allowed the ultrasound

examiner to use the graph chart diagram and abnormality score to

perform fetal cardiac ultrasound screening and the authors demon-

strated significant improvements in the detection of congenital heart

disease.75 Abuhamad et al. evaluated a system that automatically

T A B L E 1 (Continued)

Author

year

Number of

patients Inclusion criteria Description of artificial intelligence Objective Results

Park 2013 196 DICOM

scans

1st trimester An algorithm was created to locate the

fetal head through learning

detectors and to estimate the NT

region. An NT cut is refined and

measured using Dijkstra's shortest

path applied on an edge‐enhanced
image

To propose a fully

automated method for

measuring NT in the

midsagittal plane

This method is both

effective and efficient

in detecting and

measuring NT. Only

the results of the 5

worst NT detection

cases and 5 best NT

detection cases were

shown. The first 5 had

an average error of

0.24 mm and the latter

5 had an average error

of 0.29 mm

Deng 2012 690

ultrasound

images

NR Three classifiers were trained through

Gaussian pyramids to detect the NT

region. A spatial model was

proposed to define spatial

constraints and dynamic

programming for the appropriate

detection of the NT

To propose a hierarchical

model for the

automated detection of

NT, fetal head and

body

The accuracy of NT with

50% of training data

was 55.9%

Zhang

2012

92 pregnant

women

Singleton

pregnancies

Adaboost classifiers were trained for

efficient detection of the GS and a

snake model was then used to

segment and measure GS

To propose a method to

decrease interobserver

variability related to

localization of the early

GS and performance of

GS biometric

measurements

The differences between

system performance

and radiologist

performance with

respect to GS selection

and length and depth

measurements were

7.5 � 5.0%, 5.5 � 5.2%,

and 6.5 � 4.6%

respectively

Zhang

2011

31 videos for

testing and

61 images

for training

NR A model was trained using a database

and Adaboost algorithm to locate

and measure the GS

To propose a 3 stage

method to locate the

GS

Standardized plane of GS

error is 1 with average

measurement error of

0.059 cm for length

diameters and

0.083 cm for depth

Borenstein

2009

65 pregnancies 11–13 + 6 weeks

healthy fetuses

This study measured the GS volume

excluding the fetus and the placenta

using VOCAL software and then

using SonoAVC software to

compare results. SonoAVC is

sonography based automated

volume count uses 3D ultrasound

initially developed to measure

follicular volume. VOCAL is virtual

organ computer‐aided analysis and

is a used to perform manual volume

calculations

To assess the SonoAVC

system accuracy in

measuring GS volume

and to compare with

the VOCAL system

In 95% of cases, SonoAVC

was able to measure

the volume of GS and

the success rate

increased with GA.

VOCAL and SonoAVC

systems had

comparable results

Abbreviations: 3D, three dimensional; CNS, central nervous system; GS, gestational sac; ML, machine learning; NT, nuchal translucency.
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TAB L E 2 Placental studies.

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Gupta 2021 429 patients First trimester

11–14 weeks

Images of the placenta were

taken serially in the first,

second, and third

trimester, processed and

classified using validated

deep learning tools. The

authors used five

pretrained models

“wide_resnet50_2,”

“wide_resnet101_2,”

“resnext50_32�4d,”

“resnext101_32�8d,”

“googlenet” and used

image data

augmentation

techniques to artificially

expand the size of a

training data‐set by
creating modified

versions of images in the

dataset

To compare placental

quantitative image

texture in patients with

hypertensive disorders

to those with normal

outcome

The image texture disparity

between cases and

controls was highly

significant (p < 0.001).

The model “resnext

101_32�8d” had Cohen

kappa score of 0.413

(moderate) and the

accuracy score of 0.710

(good). In the first,

second and third

trimester sensitivity and

specificity for abnormal

placental image texture

were 70.6% and 76.6%,

60.4% and 73.3%, and

83.5% and 83.5%

respectively

Schilpzand

2021

280 pregnant women 18–40 weeks Deep learning using U‐Net
for segmentation of the

placenta, and then

categorization of the

placenta as normal, low‐
lying or previa

To propose a deep learning

method that would

allow the detection of

low‐lying or placenta
previa from 2D

ultrasound images

Test dice coefficient of 0.84

(IQR + 0.23)

Sensitivity 81%

Specificity 82%

Torrents‐
Barrena

2021

60 images 17–37 weeks,

singleton and

mono‐ di twin
pregnancies

Thirteen state‐of‐the‐art
3D networks were

examined, to determine

the optimal architectural

components for the

segmentation of

placenta. All networks

used deep learning

segmentation methods

to learn features

automatically from the

raw data in an end‐to‐
end fashion

To evaluate several state‐
of‐the‐art deep
learning‐based
segmentation

approaches to

automatically segment

the placenta from 3D US

data

With regards to placenta

detection in 3D US data,

all networks perform

similarly with the

exception of HolisticNet,

DenseASPP, and

DeepMedic (Jaccard

from 0.41 to 0.57). The

best Dice values range

from 0.70 � 0.06–

0.76 � 0.12

Saavedra

2020

10 pregnant women Age: 22–

43 years, 3rd

trimester

Images were collected using

volume sweep imaging

by a non specialist and

U‐Net deep learning was
used to segment the

placenta. The output

masks combined with

the knowledge of the

acquisition protocol

assessed the spatial

location of the placenta

(using a heat map)

To propose an automatic

method for the

detection of the location

of the placenta

The method showed a

sensitivity of 75% and a

specificity of 92% for

placental location

Hu 2019 1364 fetal ultrasound

images from 247 pts

8–34 weeks,

singleton and

multiple

gestation

The authors developed a

framework using a

convolutional neural

network that includes a

layer weighted by

automated acoustic

shadow detection

To develop a new method

for placental

segmentation using

convolutional neural

network

Mean dice coefficients for

automated

segmentation on the full

dataset with and

without the acoustic

shadow detection layer

were 0.92 � 0.04 and

(Continues)
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retrieves the right and left ventricular outflow tracts from a three‐
dimensional (3D) volume of the fetal chest and found they were

correctly identified 91.7% and 94.4% of the time, respectively.76

Arnaout et al. used trained neural networks to detect the various

cardiac views and distinguish between normal and abnormal images

on fetal echocardiogram.77 The authors found an AUC of 0.99, a

sensitivity of 95%, and specificity of 96%. Herling et al. evaluated the

correlation between automated measurement of fetal atrioventric-

ular plane displacement using myocardial velocity traces obtained by

color tissue Doppler imaging (cTDI) versus those obtained by

anatomic M mode and found a significant correlation between mitral

annular plane systolic excursion (r = 0.64; P < 0.001), septal annuar

plane systolic excursion (r = 0.72; P < 0.001) and tricuspid annular

plane systolic excursion (r = 0.84; P < 0.001) measurements obtained

by M‐mode and those obtained by cTDI.78 Dozen et al. developed a

novel method for image segmentation of ultrasound videos based on

deep learning on the four‐chamber view of the fetal heart to accu-

rately assess the ventricular septum and reported a mean Intersec-

tion over Union of 0.5543.79 Three studies proposed automated

systems for detection and evaluation of the fetal four‐chamber view
whereas Dong et al. proposed a deep learning framework for quality

control of the four‐chamber view, demonstrating a mean average

precision of 94.52%.80–83 A study by Xi et al. proposed a system for

automatic segmentation of the fetal heart and lungs from ultrasound

images.84

Twenty studies focused on the use of AI for fetal neuro-

sonography beyond the first trimester (Table 5). Three studies eval-

uated deep learning algorithms to localize planes within the fetal

brain from 3D ultrasound volumes,85–87 whereas four additional

studies proposed models to segment or measure various intracranial

structures from 3D US volumes of the fetal head.88–91 Two studies

focused on deep learning systems for the detection of fetal intra-

cranial planes from 2D ultrasound.92,93 Nambuerete et al. developed

a system to predict gestational age and neurodevelopmental matu-

ration of the fetus from 3D images.94 Five studies developed models

for automatic detection or measurement of various fetal intracranial

structures from 2D images in the second trimester including the

lateral ventricles, cerebellum, cavum septum pellucidum, corpus

T A B L E 2 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

0.91 � 0.03 when

compared to manual

segmentation

Looney

2018

2393 first trimester 3D‐
US volumes

11 + 0–

13 + 6 weeks

A fully convolutional neural

network (OxNNet) was

trained to automatically

segment the placenta

using 3D US volumes.

The training data set

was quality controlled

by three operators to

produce the “ground‐
truth” data set

To fully automate the

segmentation of the

placenta from 3D

ultrasound volumes and

to assess the clinical

utility of placental

volume by assessing

predictions of small‐for‐
gestational‐age babies
at term

The ROC curves for the log

placental volume

(MoMs) calculated by

the fully automated

CNN (OxNNet) and the

real world technique to

predict SGA were

almost identical at 0.65

(95% CI 0.61–0.69) for

OxNNet and 0.65 (95%

CI 0.61–0.70) for the

ground‐truth

Qi 2018 34 patients including 23

with invasive

placentas and 11 with

noninvasive placentas

NR A layered aggregation

structure based on

deeply supervised IDA

for automatic placental

lacunae localization was

proposed by the authors

To design a model to

automatically detect

placental lacunae in 2D

placental ultrasound

images

The model yielded the

highest mean average

precision of 35.7%,

surpassing all other

baseline models

evaluated (32.6%,

32.2%, 29.7%)

Lei 2015 443 images 18–40 weeks A supervised learning

method using a support

vector machine was

used to extract features,

cluster features using

Gausian mixture model

and encode the clusters

by Fisher vector for

staging accuracy

enhancement

To propose a method to

detect and automatically

stage placenta maturity

from B mode ultrasound

images

The model demonstrated an

AUC of 96.77%,

sensitivity: 98.04%,

specificity: 93.75%,

98.04%, and 93.75% for

the placental maturity

staging

Abbreviations: 2D, two dimensional; 3D, three dimensional; AUC, area under the curve; CNN, convoluted neural network; IDA, iterative deep

aggregation; MoM, multiples of the median; NR, not reported; ROC, receiver‐operating characteristics; SGA, small for gestational age; US, ultrasound.
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TAB L E 3 Fetal biometry.

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Arroyo 2022 58 Third trimester, maternal

age ≥18
A standardized volume

sweep image was

performed in the

absence of a trained

sonographer and a

deep learning

algorithm (U‐Net)
was used for

diagnostic

assessment

To assess the accuracy of

U‐Net to determine

fetal position,

placental location

and fetal biometric

measurements

compared to an

experienced

sonographer

U‐Net showed 100%

agreement for fetal

presentation (Cohen's

κ 1 [p < 0.0001]) and

76.7% agreement for

placental location

(Cohen's κ 0.59
[p < 0.0001]). It also

achieved relative

error of 5.6% for BPD

and 7.9% for HC.

Biometry

measurements

corresponded to

estimated gestational

age within 2 weeks of

those assigned by

standard of care

examination with

89% accuracy

Chenarlogh

2022

HC‐18 dataset 1334 2D

images MFP dataset:

999 images

NR The authors used a deep

learning method, U‐
Net, which includes

three major blocks:

The feature encoder

path, the bottleneck

layer, and the feature

decoder path. They

then used their

dataset to test HC

and AC segmentation

by U‐Net

To propose a new fast

and accurate U‐Net
model for medical

imaging

segmentation

Dice and Jaccard

coefficients were

97.62% and 95.43%

for fetal head

segmentation and

95.07%, and 91.99%

for fetal abdominal

segmentation. Dice

and Jaccard

coefficients of 97.45%

and 95.00% using the

public HC18‐Grand
challenge dataset

Plotka 2022 50 19–38 weeks gestation A novel multi‐task
convolutional neural

network based

spatio‐temporal fetal
US extraction and

standard plane

detection algorithm

(FUVAI) was created

by the authors and

evaluated on 50

freehand fetal US

video scans. The

FUVAI obtained

measurements were

then compared to

measurements

obtained by five

experienced

sonographers

To investigates the use

of deep convolutional

neural networks to

automatically

perform

measurements of

fetal HC, AC, BPD, FL

using fetal ultrasound

videos to obtain EFW

and estimate GA

FUVAI had similar

performance to the

sonographer obtained

measurements and

operates within the

range of human‐level
error. The estimated

GA and fetal weight

has a mean absolute

error of

0.05 � 0.01 weeks

and 25 � 5 g

respectively when

comparing FUVAI

obtained

measurements to the

experienced

sonographers

Wang 2022 551 pregnant women HC‐18 database GAC Net is a CNN that is

based on an encoder

decoder system and

can perform end‐to‐
end training. The

attenuation model

(SUO) was then used

To propose a

convolutional neural

network for the

accurate detection

and measurement of

HC

GAC‐Net had the

following results:

HD: 1.22 � 0.71 mm

Absolute difference:

1.75 � 1.71 mm

DSC: 98.21 � 1.16% of

head circumference

(Continues)
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

to identify the correct

structural boundaries

which were superior

to other deep

learning models

including U‐Net, V‐
Net and Mask‐RCNN

Zhang 2022 551 pregnant women HC‐18 database Segmentation based model:
The use of

convolutional neural

networks for medical

image segmentation,

processing of

segmentation results

to exclude all

inaccurate results and

finally HC

computation through

ellipse fitting

To compare

segmentation based

and segmentation

free methods for

measurement of fetal

HC

The results show that

segmentation based

approaches provide

more accurate

results, however the

learning that is

possible with

regression CNN

models may result in

better estimations of

HC in the future

Segmentation free model:
The use of regression

convolutional neural

networks which can

learn the features of

the fetal head and

estimate the head

circumference

directly

Bano 2021 349 US images from 42

pregnancies

NR The authors developed a

framework that used

semantic

segmentation models

to segment key

anatomical features

as well as region

fitting and finally

scale recovery for the

biometry estimation

To propose an

automated

framework for

measurements

required for

calculating EFW

The authors noted the

system was accurate

for biometry

estimation with the

error between

clinically measured

and predicted

biometry less than

the permissible error

during clinical

measurements.

Comparison of the

predicted versus

clinically measured

fetal biometry

showed that the

errors in HC

(0.67 mm), AC

(3.77 mm) and FL

(2.10 mm) were

minimal and better

than the �15% error

that is typically

accepted in fetal US

assessment

Burgos‐
Artizzu

2021

1992 Second or third trimester

singleton pregnancy

with no congenital

malformation or

aneuploidy

A novel method for GA

estimation

(quantusGA) from the

TTA plane was

developed using deep

learning techniques

based on CNN. The

To evaluate the

performance of

quantusGA on

automated analysis

of fetal brain

morphology on

standard cranial

95% confidence interval

of the error in

gestational age

estimation was

14.2 days for the

artificial intelligence

method alone and
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

method is based on

supervised learning of

previously labeled

images

ultrasound sections

to estimate the

gestational age in

second and third

trimester fetuses

compared with

standard fetal

biometry

11.0 days when used

in combination with

fetal biometric

parameters,

compared with

12.9 days using

standard biometrics

alone

Luo 2021 1005 Low risk pregnancy,

between 16 and

41 weeks, singleton,

accurately dated by

1st trimester US, no

structural anomalies

The authors used SF to

acquire sections and

measure biparietal

diameter, head

circumference,

abdominal

circumference and

femur length. SF

consists of two

applications: SFA and

SFM. SFA is a

technique in which

only one finger touch

is used during real‐
time scanning and

automatically

distinguishes

acquired standard

sections in the cine

loop that contain the

specific standard

section and then

automatically

measures related

growth parameters

To evaluate the efficacy

of SF in standard

obtaining biometric

measurements

compared to

traditional

ultrasound

In 998 of 1005 cases

(99.30%), SF

successfully acquired

the sections and

made all

measurements. The

agreement between

the techniques was

high for all

measurements. The

time to obtain

sections and measure

biometric parameters

or solely measure

biometric parameters

was significantly

shorter with SF than

with traditional

ultrasound. The

authors concluded

that SF helped in the

acquisition of reliable

standard sections and

biometric

measurements and

saved time

Moccia 2021 551 women NR A convolutional neural

network, Mask‐
R2CNN, was

developed using the

data from the HC18

Grand challenge with

999 images used for

training and 335

images for testing on

delineating HC by

regressing distance

fields

To present a deep

learning approach

that can accurately

delineate HC in fetal

ultrasound images

Mask‐R2CNN was able

to address the

challenges of HC

delineation in US

images, with an

absolute difference of

1.95 mm, without any

manual intervention

Oghli 2021 999 images for training

and 335 for testing

14–26 weeks GA Attention MFP‐Unet
learns to detect and

extract the

anatomical structures

that are of interest

through a

convolutional neural

network

To propose a

convolutional neural

network for

segmentation of fetal

biometric parameters

and measuring BPD

HC AC and FL

Superior performance of

attention MFP‐Unet
compared to other

approaches used for

automatic

measurement of fetal

biometric parameters

was noted with the

following results:

DSC: 0.98

HD: 1.14 mm

Good contours: 100%

Conformity: 0.95

(Continues)
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Pluym 2021 143 women 18–22 + 6 weeks GA A sonographer and a

physician obtained

manual

measurements using

2D ulltrasound for

BPD, HC,

transcerebellar

diameter, cisterna

magna, and posterior

horn of the lateral

ventricle. Then 3D

imaging sweep was

obtained by the

sonographer and

automated

measurements taken

by SonoCNS fetal

brain. SonoCNS was

developed by GE

healthcare it utilizes a

3D sweep of the fetal

brain to align three

views into a single

view in which it

recognizes and

measures the

structures

To compare the accuracy

of an automated 3D

ultrasound technique

with regards to fetal

intracranial

measurement to the

traditional manual

technique

The ICC reflected a

reliability of 0.8–0.88

for the automated

approach compared

to the manual

measurements for

BPD and HC and a

poor‐moderate
reliability (0.23–0.5)

for transcerebellar

diameter, cisterna

magna and posterior

horn of the lateral

ventricle

Prieto 2021 23,309 images from

ZAPPS study and

124,645 images from

UNC used to train the

generative networks.

7233 images from

FAMLI study used to

evaluate AI system

NR A large database of

obstetric US images

acquired, stored and

annotated by expert

sonographers was

used to train

algorithms to classify,

segment, and

measure several fetal

structures: BPD, HC,

CRL, AC and FL. Raw

images were then

used for model

training by removing

caliper and text

annotation to fully

automate image

classification,

segmentation, and

structure

measurement to

estimate the GA

To assess automatic

measurement of fetal

structures using a

low‐cost obstetric US
to assist in

establishing GA

without the need for

skilled sonographer

There was an average

accuracy of 93% in

classification tasks, a

mean intersection

over Union accuracy

of 0.91 during

segmentation tasks,

and a mean

measurement error of

1.89 cm, leading to a

1.4 days mean

average error in the

predicted GA

compared to expert

sonographer GA

estimate using the

Hadlock equation

Zeng 2021 551 pregnant women HC‐18 database Data in the HC‐18
database was used to

train DAG V‐Net
deep learning models.

These models were

able to segment fetal

head scans from 2D

US images. Ellipse

fitting was then used

for automated

measurement of HC

To propose a deep

learning technique

for segmentation of

fetal ultrasound

scans and

measurement of HC

DSC: 97.93%

DF (HC difference):

0.09 � 2.45 mm

AD (absolute difference):

1.77 � 1.69 mm

HD: 1.29 � 0.79 mm

This method ranked 5th

in the HC18 challenge
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Zhu 2021 435 images NR The authors compared

traditional machine

learning method to

determine the edges

of the femur based on

a forest regression

method and

automatic

measurements of FL

based on a deep

learning method

(SegNet)

To evaFplotate and

clinically validate and

the proposed

algorithm presented

for measuring fetal

femur length

Compared to manual

performance of FL,

the approach based

on the forest

regression model

(traditional machine

learning method) was

1.23 � 4.66 mm and

SegNet was

0.46 � 2.82 mm

Fiorentino

2020

335 images NR A region‐proposal CNN
for head localization

and centering was

created followed by a

regression CNN for

accurately delineating

the HC. The first CNN

was trained to exploit

transfer learning,

while the regression

CNN was based on

distance fields

To lower intra‐and inter‐
operator variability in

HC measurements

A mean absolute

difference of 1.90

(�1.76) mm and a

DSC of 97.75 (�1.32)

% were achieved

Li 2020 551 patients Pregnant women

receiving routine US

screening with

clinically healthy

fetuses

An automatic

measurement system

that is based on a

neural network which

provides information

for fetal head

segmentation,

accurate BPD and

OFD prediction

To present a novel end to

end deep learning

network to measure

HC, BPD and OFD

automatically from

2D images

SAPNet had an overall

average mean

intersection over

Union accuracy of

96.46 � 1.77

1334 images

Miyagi 2020 Japanese Society of

Ultrasonics in

Medicine dataset

18–41 weeks gestation Neural networks were

trained by deep

learning to estimate

fetal weight based on

the gestational age,

BPD, AC and FL

To develop an AI method

to estimate fetal

weight based on

BPD, AC and FL

The authors concluded

that the AI's good

accuracy for extreme

fetal weights is likely

to be very useful and

that AI with the

neural network seems

to have potential for

estimating fetal

weights

Zhang 2020 HC‐18 dataset All trimesters of

pregnancy

The authors used a CNN

with the ability to

learn on its own to

detect the contour of

the head using 4

regression models

To propose a new

method where the

CNN can directly

measure HC without

manually labeling

segmented images

The deeper model Reg‐
ResNet50 had better

performance with

mean squared error

loss function than the

rest of the models

Al Bander

2019

999 2D images for

training and 335

images for testing

from 551 pregnant

women

NR The authors proposed a

framework to detect

the fetal head using

object localization

and segmentation

based on a deep

learning model. They

used a fully

convolutional neural

network developed

To propose a deep

learning based

method to segment

the fetal head from

US images

The authors found the

method efficient for

fetal head biometry

measurement with a

Dice coefficient of

97.73 � 1.32

(Continues)
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

for segmentation to

improve the accuracy

of the image and

ellipse fitting at the

contour of the head

for measurement

Rajinikanth

2019

HC‐18 dataset: 999

images for training

and 335 for testing

NR The authors used a Jaya

algorithm and Otsu

threshold for pre‐
processing of 2D US

images and Chan

Vese and Level set

segmentation for

post‐processing. The
final step was then

evaluation and

validation of the

system

To use a hybrid‐scheme
to determine HC on

2D US images

The hybrid procedure

offers enhanced

picture similarity

during HC

measurement

(>88.5%) compared
to 2D ultrasound

images and the

ground truth which

are annotations on

the existing dataset

Rong 2019 1334 images for fetal HC NR CNNs are used to derive

an external force

which is integrated

into active contour

models. This method

is tested on fetal head

in ultrasound images.

Active contour

models fit an ellipse

at the fetal head

boundaries

To propose a new

algorithm that trains

a convolutional

neural network to

derive an external

force. This external

force is integrated in

the active contour

models for curve

evolution and ellipse

fitting of the fetal

head circumference

This method is effective

in detecting fetal

head circumference

and it is competitive

to other methods

used for this task

ADF (absolute

difference):

2.45 � 2.55

DSC: 95.49 � 4.11

HD: 2.44 � 1.96

Salim 2019 100 patients Singleton gestation, 20–

40 weeks, normal

BMI, age 18–35

pregnancy dating by

CRL

An algorithm was used to

detect HC, AC and FL,

and measurement

performed by

automatically

inserting calipers. The

caliper placement was

assessed subjectively

and classified as

acceptable, minor

changes required,

major changes

required. The authors

compared the

automatic

measurements with

manual

measurements

To evaluate whether an

automated method

can detect and

measure HC, AC and

FL on 2D US images

This automated tool

identified the correct

biometric

measurements in 99%

of the images. The

results were accurate

compared to manual

measurements

Sobhaninia

2019

999 images All trimesters included The authors used a multi‐
task deep

convolutional neural

network for

automated

segmentation of the

HC and an Ellipse

tuner for measuring

HC

To propose a new

method for the

automated

measurement of fetal

HC

The authors

demonstrated a DSC

score 96.84 � 2.89,

comparable with the

radiologist's

annotations
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Van Den

Heuvel

2019

183 pregnant women NR The obstetric sweep

protocol was used to

identify head

circumference

measurements using

two fully

convolutional neural

networks

VGG net would identify

the frames with fetal

head and Unet would

then measure the HC

from the images

identified by VGGnet

To develop a system that

can directly measure

fetal head

circumference by

utilizing data from

obstetric sweep

protocol

The HC measurements

were used to estimate

gestational age

through the Hadlock

equation

Most of the results were

between P 2.5 and P

97.5 intervals of the

Hadlock curve

[P 2.5–P 97.5 interval is a

95% percent

prediction interval

where P is percentile]

Grandjean

2018

30 16–30 weeks gestation,

maternal age >18,
singleton

Smartplanes: AI software

that enables the

automatic

identification of

correct scanning

plane within the head

volume and automatic

positioning of calipers

to measure BPD and

HC

To evaluate the

feasibility and

reproducibility of

Smartplanes to

automatically identify

the TTA plane from

3D ultrasound

volumes to measure

BPD and HC

compared to

manually obtained

measurements by 2

experienced

sonographers

Interclass correlation

coefficients were

>0.9 for comparison

between 3D

measurements

obtained by

Smartplanes software

and the sonographer

measurements

Kim 2018 172 images NR The authors developed a

deep learning process

that was hierarchical

and divided into 3

steps:

1. Measurements of HC

and BPD (ellipse

fitting)

2. Plane acceptance

check

3. Refinement of the

measurements

To develop a deep

learning system to

estimate HC and

BPD with high

accuracy and

reliability

The authors

demonstrated a

success rate of

92.31% for HC and

BPD accuracy of

87.14% for the

acceptance of the

plane

Kim 2018 77 pregnant women NR The authors used a CNN,

U‐Net for initial
estimation of AC,

measurement of AC

and plane checking.

These processes take

into account

clinicians' decisions,

anatomical structures

and characteristics of

the ultrasound image

To propose an

automated method

for fetal biometry

estimation

U‐Net demonstrated:
Dice similarity metric of

92.55 � 0.83 for AC

measurement

Accuracy of 87.10% for

acceptance check of

the FASP

Sinclair 2018 2724 2D images 18–22 weeks The authors assessed

convolutional

networks that are

trained to segment

fetal head

ultrasounds on 2D

images and used

ellipse fitting for the

To propose an

automated system to

estimate

measurements of HC

and BPD

HC:

Model expert error:

1.99 mm

Inter‐observer error
2.16 mm

BPD:

Model expert error:

0.61 mm

(Continues)
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

segmented contour to

measure HC and BPD

Inter‐observer error
0.59 mm

Dice coefficient:

Model expert error:

0.980

Inter‐observer error
0.980

The authors concluded

model performance

resembles human

expert performance

Li 2017 145 images of HC for

testing and 524 for

training.

18–33 weeks gestation The framework

integrated knowledge

about GA and US

images into a random

forest classifier and

then used phase

symmetry to detect

the center of the fetal

skull. Finally, the

ellipse fitting method

(ElliFit) was used to

measure HC

To propose a learning‐
based framework

that used knowledge

and ElliFit to

automatically

measure fetal HC

The authors found that

the framework had an

average

measurement error of

1.7 mm for fetal HC

Jang 2017 56 training cases

32 test cases

NR The author's developed a

convolutional neural

network that uses

doctor's experience,

anatomical structures

and the

characteristics that

define a certain

ultrasound image and

then used Hough

transformation to

measure the AC

To propose a model for

automated

measurement of fetal

AC from 2D

ultrasound data

CNN accuracy compared

to expert: 0.809

CNN accuracy compared

to expert 2: 0.771

Accuracy between 2

experts 0.905

Wu 2017 492 US videos for

training and 219 for

testing

16–40 weeks FUIQA uses two deep

convolutional neural

networks (L‐CNN and

C‐CNN)
L‐CNN finds the region of

interest and C‐CNN
assesses the quality

of the image by

assessing stomach

bubbles and umbilical

vein

To propose a fetal

ultrasound image

quality assessment

(FUIQA) for US image

quality control

The authors found

FUIQA results are

comparable to

manual assessments

by experts

Wu 2017 Training set: 900 fetal

head images & 688

fetal abdomen images

Testing set: 236 fetal

head & 505 fetal

abdomen images

19–40 weeks A cascaded CNN was

utilized for feature

extraction from US

images and to

distinguish the

anatomy. The authors

then used the auto‐
context scheme to

improve the CNN

To propose a cascaded

framework for

automatic US image

segmentation of fetal

head and abdominal

scans

The authors noted that

large variations of

GA, size, appearance

and shape in anatomy

were well addressed

by the system on

boundary delineation

tasks and concluded

that the CNN showed

promising

segmentation

accuracy
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Zhang 2016 60 fetal images 20–35 weeks gestation The authors used a deep

learning method

which used a filter

bank designed to

extract texton

features related to

the BPD, HC, OFD

and FL. The texton

cues with multiscale

local brightness form

a unified framework

for the delineation of

fetal head and femur

and use square ellipse

fitting for

measurement of the

fetal head and closed

contour for the fetal

femur

To propose a texton

approach for

segmentation of the

BPD, HC, OFD, FL

Fetal head:

Precision: 96.85%

Maximum symmetric

contour distance:

1.46 mm

Average symmetric

contour distance:

0.53 mm

Fetal femur:

Precision: 84.37%

Maximum symmetric

contour distance:

2.72 mm

Average symmetric

contour distance:

0.31 mm

Chen 2015 300 videos for training

and 219 for testing

18–40 weeks The authors developed a

multi‐layered CNN

that was trained from

Image‐Net detection
data to locate the

FASP. The system

used a classifier to

generate a probability

map and identify the

US image as FASP or

not FASP

To present a learning

based approach to

identify the FASP

using CNN

The authors reported the

following results for

their CNN:

Accuracy: 0.904

Precision: 0.908

Recall: 0.995

F1: 0.950

Hur 2015 39 pregnancies Singleton uncomplicated

pregnancies between

26 + 0 and

32 + 0 weeks

The image of the long

bone was

reconstructed using

the 5D LB (five

dimensional long

bone). After the 3D

volume data were

displayed in a

multiplanar mode

To determine the

feasibility of 5D LB

functions by

comparing the

biometric data using

2D ultrasound, 3D

volume data and 5D

LB treated 3D

volume

5D LB is reproducible

and comparable with

conventional 2D and

3D ultrasound

techniques for fetal

long bone

measurement

The length of the bone

was measured

automatically.

The interclass correlation

coefficient for femur,

tibia, and fibula was

0.91, 0.92, and 0.89,

respectively

Perez‐
Gonzalez

2015

23 images NR The authors used a

framework that

incorporates texture

maps, morphological

operations, active

contours and optimal

ellipse for detection,

segmentation and

measurement of BPD

and HC

To propose a fully

automated method to

segment and

measure fetal head

from 2D images

Precision: 94.61%

Dice similarity index:

97.19%

Max distance: 2.64 mm

Correlation: 99.8%

Foi 2014 90 2D images 21, 28, and 33 weeks The authors developed a

framework is based

on the cost function

that assumes that the

fetal head is elliptical.

To propose a fully

automated method to

segment the fetal

head and measure

The segmentation

accuracy was similar

to the inter expert

variability and better

(Continues)
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

A template image is

then constructed and

the cost function

compares this

template image with

the observed US

image. A Nelder‐
Mead algorithm was

used for minimization

BPD and HC from 2D

US images

than other automated

methods

The biometric

measurements were

as accurate as the

manual

measurements

Dice %: 97.73 � 0.89

Maximum symmetric

contour distance:

2.26 � 1.47 mm

Average symmetric

contour distance:

0.91 � 0.47 mm

Rueda 2014 90 images Fetuses at 21, 28 and

33 weeks

The authors evaluated

various methods to

automatically

segment fetal

anatomy to measure

standard planes for

the fetal head and

femur at different

gestational ages (21,

28 and 33 weeks)

with varying image

quality to reflect data

encountered in real

life environments.

Five teams completed

in the challenge and

experts manually

delineated the objects

of interest to define

the ground truth

To evaluate and compare

segmentation

methods for

measurement of

biometry

The authors found that

head sub‐challenge
resulted in better

results than femur

sub‐challenge and it

was comparable to

manual

measurements

Wang 2014 90 fetal ultrasounds Fetuses at 21, 28 and

33 weeks

The authors used a fully

automatic deep

learning system to

segment the femur

from US images and

measure fetal length

To propose an automatic

method for fetal

femur segmentation

and measurement

The authors concluded

that the method

works well at

extracting the femur

and measurement of

the femur length with

the system taking an

average of 2.28 s

Maximum symmetric

contour distance:

6.02 � 7.29

Average symmetric

contour distance:

1.04 � 1.29

Root mean square

symmetric contour

distance

measurement:

1.77 � 2.41

Chen 2012 300 videos for training

and 219 for testing

18–40 weeks gestation The authors developed a

deep convolutional

neural network and a

transfer learning

To propose a learning

based approach to

detect FASP

This T‐CNN method was

shown to be better

than R‐CNN (regional

based) and RVD
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

strategy constructed

by US videos to locate

the FASP

(radial component

model and vessel

probability map) with:

Accuracy: 0.896

Precision 0.714

Recall: 0.710

F1: 0.712

Ponomarev

2012

90 fetal femur and 90

fetal head images

NR The framework uses the

relative brightness of

the femur and head to

locate the region of

interest and then uses

segmentation and

multilevel

thresholding on these

planes. A support

vector machine

classifier was used for

the selection from the

segmented images of

a valid scan of the

femur and an edge‐
based scoring

function was used for

refinement of the

skull ellipse

To propose a fully

automated method

for the detection of

the standard fetal

planes for biometric

measures from 2D

images

93.4% of the images of

the femur were

correctly segmented

and measure and

96.6% of the fetal

head images were

correctly segmented

and measured

Sun 2012 90 images NR The authors developed

an algorithm

containing the

circular shortest path

extraction, robust

ellipse fitting and

skull outer edge

finding to automate

measurements

To propose an algorithm

to automatically

measure BPD, OFD

and HC

The authors found the

circular shortest path

algorithm both

automatic and

efficient. The typical

running time for the

algorithm on a

756 � 546 image is

about 1–2 s

Rahmatullah

2011

2384 images 14 weeks‐term gestation,

healthy women,

singleton pregnancies

with no fetal

abnormalities

Adaboost learning

algorithm was trained

to extract images

containing the two

landmarks (stomach

bubble and umbilical

vein)

To propose an

automated method to

detect two

landmarks: The

stomach bubble and

umbilical vein

Detection of stomach

bubble was more

accurate than

umbilical vein

detection with an

execution time <6 s.

The umbilical vein

detection was poor at

early gestational ages

Mukherjee

2010

90 images Third trimester fetuses The algorithm has a

normalized score

based on the size,

shape and

presentation of the

femur in clinically

acceptable scans A

polynomial curve

fitting technique is

used for the

delineation of the end

points of the femur to

allow it to be

measured

To propose an

automated two step

framework for

detecting and

measuring FL

The predictions from

automated

measurements were

found to be within

�2 SD of GA

estimates from both

manual

measurements in 89/

90 cases and were

within �3 SD in all 90

cases

(Continues)
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T A B L E 3 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Shrimali

2009

7 subjects Non‐anomalous
singleton, live born

fetuses with no family

history of dwarfism;

no maternal use of

alcohol or cigarettes

or maternal diabetes

Morphological operators

processed the images

to remove

background, then

refined them followed

by measurement of

the FL. The whole

process was done in a

time efficient manner

To propose a new time

efficient morphology‐
based algorithm to

detect refine and

measure femur

length

Time for detection,

refinement and

measurement was 4 s.

The authors found

the results were

comparable to

manually measured

FL

Carneiro

2007

1426 head, 1168 femur,

and 1293 abdomen

images for training

NR The authors developed a

deep learning method

derived from a

constrained

probabilistic boosting

tree and a large

database of expert

annotated images for

detection and

segmentation of the

HD, BPD, AC and FL

To propose a new

technique for fast

automatic fetal

biometry

measurements

This method was efficient

and closely accurate

to experts in obstetric

measurements with

average error of

0.0265 with respect

to ground truth

measurements

Test set: 177 head, 183

abdomen, and 171

femur images

Carneiro

2007

1426 head images

1168 femur

1293 abdomen

547 humerus

325 fetal body

NR The authors evaluated a

deep learning

technique for

automatic

segmentation of fetal

biometric

measurements in

addition to fetal

humeral length and

CRL, using

constrained

probabilistic boosting

tree and expert

annotated images

To propose an efficient,

robust and accurate

technique for

segmentation of

biometric

measurement as well

as HL and CRL

The authors noted that

the system had

similar accuracy to

measurements by

experts with results

as follows:

CO of BPD: 0.71 mm (σ
0.61), 1.19%

(σ = 0.85)

IO of BPD: 0.83 mm (σ
0.66), 1.33% (σ 0.82)

r for BPD: 0.999

CO of HC: 5.22 mm (σ
5.27), 2.07%

(σ = 1.67)

IO of HC: 8.46 mm (σ
3.28), 3.54% (σ 0.99)

r for HC: 0.996

CO of AC: 12.6 mm (σ
9.48), 6.35% (σ 5.26)

IO of AC: 11.62 mm (σ
10.6), 5.65% (σ 6.53)

r for AC: 0.974

[CO = mean computer to

observer distance,

IO = mean inter

observer difference

and r is the
correlation

coefficient]

Abbreviations: 2D, two dimensional; 3D, three dimensional; AC, abdominal circumference; AI, artificial intelligence; BPD, biparietal diameter; CNN,

convolutional neural network; CRL, crown rump length; DSC, dice similarity coefficient; EFW, estimated fetal weight; FASP, fetal abdominal standard

plane; FL, femur length; GA, gestational age; HC, head circumference; HD, hausdorff difference; HL, humeral length; ICC, intraclass correlation

coefficients; NR, not reported; OFD, occipitofrontal diameter; SD, standard deviation; SF, smart fetus; SFA, smart fetus acquisition; SFM, smart fetus

measurement; T‐CNN, tube convolutional neural network; UNC, University of North Carolina; US, ultrasound.
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TAB L E 4 Fetal echocardiography.

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Primary objective Results

Sakai 2022 160 cases

344 videos

18–34 weeks This interpretable model is

an auto‐encoder that
includes two novel

techniques, cascade

graph encoder and

view‐proxy loss, and
generates a “graph

chart diagram” as an

explainable

representation. The

graph chart diagram

visualizes the

detection of

substructures of the

heart and vessels in

the screening video on

a two‐dimensional
trajectory and,

thereafter, calculates

the abnormality score

by measuring the

deviation from the

normal. The examiner

uses the graph chart

diagram and

abnormality score to

perform fetal cardiac

ultrasound screening

The authors proposed a

novel deep learning‐
based explainable

representation “graph

chart diagram” to

support fetal cardiac

ultrasound screening,

which has low

detection rates of

congenital heart

diseases

Graph chart diagrams

improved detection of

abnormalities as

shown by the mean

AUC of the ROC curve

Residents: 0.616→0.748

Fellows: 0.829→0.890

Experts: 0.966→0.975

Arnaout

2021

107,823 images from

1326

echocardiograms

and 4108 fetal

surveys

18–24 weeks GA Neural networks were

trained to detect the

various cardiac views

and distinguish

between normal and

abnormal CHD.

Segmentation was also

used to measure fetal

cardiothoracic space

To propose a

segmentation modality

capable of

distinguishing normal

from abnormal

echocardiograms

This model had:

AUC: 0.99

Sensitivity: 95%

Specificity: 96%

Negative predictive value:

100% in differentiating

between normal and

abnormal fetal

echocardiograms

Herling

2021

Group 1 = 201

Group 2 = 107

Group 3 = 35

Group 1: Uncomplicated

singleton gestation at

18–42 weeks used to

develop reference

ranges, Group 2:

Uncomplicated

singleton gestation at

>41 weeks gestation,

Group 3: EFW <2.5
centile or <10th
centile with UA PI

>97.5th centile

Cineloops of the heart

were obtained using

cTDI and an

automated algorithm

developed in‐house
was used to obtain

mitral, tricuspid and

septal annular plane

systolic excursion.

Gestational‐age
specific reference

ranges were

constructed and

normalized for cardiac

size

To evaluate the

correlation between

automated

measurement of fetal

atrioventricular plane

displacement using

myocardial velocity

traces obtained by

cTDI versus those

obtained by anatomic

M mode

There was a significant

correlation between

MAPSE (r = 0.64;

P < 0.001), SAPSE

(r = 0.72; P < 0.001)

and TAPSE (r = 0.84;

P < 0.001)

measurements

obtained by M‐mode
and those obtained by

cTDI

Qiao 2021 1000 images NR The authors proposed a

PSFFGAN, which

synthesizes high‐
quality fetal four

chamber views using

four chamber sketch

images. In addition,

To propose a PSFFGAN

that synthesizes high

quality four chamber

views using four

chamber sketch images

The experimental results

show that the fetal

four views synthesized

by the proposed

PSFFGAN have

objective evaluation

values as follows:

(Continues)
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T A B L E 4 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Primary objective Results

they proposed a novel

TGALF, which

optimizes PSFFGAN to

fully extract the

cardiac anatomical

structure information

provided by four

chamber sketch images

to synthesize the

corresponding fetal

four chamber views

with speckle noises,

artifacts, and other

ultrasonic

characteristics

Structural similarity

index of 0.4627,

Multiscale structural

similarity of 0.6224,

and freshet inception

distance of 83.92,

respectively

Xi 2021 312 images 37 weeks GA The authors developed a

model to achieve

semantic segmentation

of the fetal heart and

lungs using a

multiscale model with

skip connection

framework and

attention mechanisms

integrated. The multi‐
scale feature

extraction modules are

incorporated with

additive attention gate

units for irrelevant

feature elimination,

through a U‐Net
framework with skip

connections for

information

compensation

To propose an automated

semantic segmentation

model of fetal hearts

and lungs from

ultrasound images

Dice coefficients of fetal

heart segmentation

obtained by the

authors proposed

method vary in the

range of 0.878–0.904

and Dice coefficients

for segmentation of

fetal lungs ranged from

0.784 to 0.872

Dozen 2020 211 pregnant women Normal fetal cardiac

ultrasound

The authors developed a

novel method for

segmenting the fetal

ventricular septum

called CSC, which

employs the time‐
series information of

videos and specific

section information to

calibrate the output of

a deep learning system,

U‐net

To develop a novel method

for image

segmentation of

ultrasound videos

based on deep learning

on the four‐chamber
view of the fetal heart

to accurately assess

the ventricular septum

The mIOU was 0.5543 for

the CSC which was

superior to other deep

learning methods (U‐
Net and DeepLab v3+)

Dong 2020 2032 positive and

5000 negative

images.

14–28 weeks The authors developed a

framework composed

of three networks; a

basic CNN, for

classifying 4 chamber

views from raw data, a

deeper CNN to

determine the gain and

zoom of the images

and an aggregated

To propose a deep

learning framework for

quality control of the

four chamber view

The authors demonstrated

a mAP of 93.52%. The

adaptability and

generalization had a

mAP of 81.2%
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T A B L E 4 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Primary objective Results

residual visual block

net to detect the

anatomical structures

on a plane. The

quantitative score of

all 3 networks achieves

automatic quality

control

Qiao 2017 1250 images Healthy pregnant women The authors developed an

artificial intelligent

learning system

incorporating a

multistage residual

hybrid attention

module to capture

discriminative features

of the fetal cardiac

chambers and to

integrate residual

identity mapping to

alleviate information

loss allowing the

system to accurately

locate the four‐
chamber view

To propose an intelligent

feature learning

detection system to

automatically obtain

the four chamber view

in the fetus

The authors noted the

following results:

Precision: 0.919

Recall: 0.971

F1 score: 0.944

mAP 0.953

Frame per second: 43

Sundaresan

2017

12 patients

91 ultrasound videos

20–35 weeks gestation

Normal fetal heart

The authors developed a

semantic segmentation

model using fetal

cardiac ultrasound

videos with four

pixelwise labels: FC

(four chamber), LVOT,

3V (3 vessel) and NH

(non‐heart,
background pixels)

using a 16 layer deep

convolutional neural

network

To propose an automated

method for identifying

the fetal heart and its

standard viewing plane

using a fully

convolutional neural

network

The author's model

demonstrated a

classification error rate

of 23.48% on real‐
world clinical

ultrasound data

Abuhamad

2008

72 fetuses 18–23 weeks normal

cardiac anatomy

3D volumes of the fetal

chest were acquired at

the level of the four‐
chamber view.

Tomographic

ultrasound imaging

was added to the

display of each

diagnostic plane. The

left ventricular outflow

plane, the right

ventricular outflow

plane and the

abdominal

circumference plane

were retrieved by the

software from the 3D

volumes and the data

were analyzed to

To evaluate prospectively

the performance of

software that

automatically

retrieves, from a three‐
dimensional volume of

the fetal chest, three

diagnostic cardiac

planes in the second

trimester of pregnancy

The software identified

the correctly the target

planes as follows:

LVOT: 94.4%

RVOT: 91.7%

AC: 97.2%

(Continues)
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callosum and choroid plexus.95–99 Lin et al. developed and validated

an AI system to automatically detect nine specific intracranial ab-

normalities for use during real time imaging100 whereas Xie et al.

developed a system to identify five specific common brain abnor-

malities including hydrocephalus, ventriculomegaly, Blake's pouch

cyst, Dandy Walker malformation and cerebellar vermis hypopla-

sia.101 Sahli et al. assessed automated measurement of fetal head

biometry and classification as normal, microcephaly or dolicho-

cephaly.102 The remaining studies evaluated segmentation of the

fetal cranium103 and detection and localization of abnormal lesions in

the axial plane to classify the image as normal or abnormal.104

Six studies focused on anatomical evaluation of the fetus

(Table 6). Two studies evaluated AI systems to automatically detect

13 standard anatomic planes.105,106 In the study by Matthews et al.,

feedback during live scanning was provided via a traffic light system

to inform the sonographer that the required anatomic views

including fetal biometry had been obtained. Sharma et al. assessed

the use of AI to comprehensively analyze and quantify operator

clinical workflow in a spatio‐temporal context during fetal

morphology ultrasound to evaluate inter and intraobserver vari-

ability.107 One study evaluated the use of an AI system incorporating

an attenuation gate to increase precision of anatomic plane detec-

tion,108 one study evaluated an AI system to classify 14 different

fetal structures in 2‐D fetal ultrasound images109 and one study

evaluated a CNN for the automated detection of three standard

anatomical planes including the abdomen, axial plane of the face and

four chamber cardiac view.110

Twenty‐five studies were classified as other uses of AI in ob-

stetric use of ultrasound (Table 7). Four studies evaluated AI

assessment of fetal lung ultrasound for assessment of fetal lung

maturity, prediction of neonatal respiratory morbidity and assess-

ment of correlation of fetal lung texture with gestational age.111–114

Three studies assessed the ability of deep learning models to undergo

self‐supervised learning by correcting the order of a reshuffled fetal

video clip,115 by context restoration of unlabeled 2D fetal images116

and the use of random forests classifiers for classification of unla-

beled fetal ultrasound images.117 Two studies focused on automated

detection of fetal facial standard planes.118,119 Two studies focused

on amniotic fluid with one evaluating automatic measurement of

amniotic fluid index120 and the other assessing segmentation of

amniotic fluid and fetal tissue.121 The remaining studies included a

study to assess machine learning to determine occiput anterior

versus occipitoposterior position in the second stage of labor,122

machine learning assessment of fetal‐lung texture in pregnancies

affected by gestational diabetes or preeclampsia compared to normal

pregnancies,123 use of an AI classifier to recognize fetal facial ex-

pressions on 4D ultrasound,124 detection of the FASP,125 automatic

detection of the fetal face on 3D ultrasound,126 assessment of fetal

presentation and confirmation of fetal cardiac activity,127 segmen-

tation of the fetal thoracic wall,128 classification of the umbilical cord

into normocoiling, hypocoiling and hypercoiling,129 automated

grading of hydronephrosis on ultrasound,130 segmentation of the

fetal kidneys,131 segmentation of the AC and FL,132 assessment of an

image reconstruction framework applied to the whole fetus133 and

automated detection of fetal standard planes.134,135 A summary of

results is reported in Table 8.

4 | DISCUSSION

Our scoping review synthesizes the current uses of AI in obstetric

ultrasound. We have demonstrated that AI has the potential to not

only automate time consuming ultrasound tasks through features

such as automated detection and measurement of fetal biometry

from ultrasound clips but also to improve the detection of congenital

anomalies. Several studies have focused on congenital heart defects

(CHD) which have current prenatal detection rates ranging from 14%

to 87% with significant geographical variation.136 Prenatal diagnosis

of CHD significantly improves neonatal morbidity and mortal-

ity.137,138 The future of AI in obstetric ultrasound may be its use in

conjunction with human experts as demonstrated in the study by

Sakai et al., which used deep learning methods to visualize the

detection of substructures of the heart in a 2D screening video and

then calculated an abnormality score by measuring the deviation

from normal.75 Physicians then utilized this information when

assessing the fetus and the authors demonstrated improved detec-

tion rates of CHD amongst all levels of providers including residents,

fellows and experts. Arnaout et al. developed trained neural

T A B L E 4 (Continued)

Author year Number of patients Inclusion criteria

Description of artificial

intelligence Primary objective Results

determine whether

cardiac planes 1–3

were displayed

correctly in each

volume

Abbreviations: AC, abdominal circumference; AUC, area under the curve; CHD, congenital heart defects; CNN, convolutional neural network; CSC,

cropping‐segmentation‐calibration; cTDI, color tissue Doppler imaging; EFW, estimated fetal weight; GA, gestational age; LVOT, left ventricular outflow

tract; mAP, mean average precision; MAPSE, mitral annular plane systolic excursion; mIOU, mean Intersection Over Union; NR, not reported; PSFFGAN,

pseudo‐siamese feature fusion generative adversarial network; ROC, receiver operator curve; RVOT, right ventricular outflow tract; SAPSE, septum

annular plane systolic excursion; TAPSE, tricuspid annular plane systolic excursion; TGALF, triplet generative adversarial loss function.

1198 - HORGAN ET AL.

 10970223, 2023, 9, D
ow

nloaded from
 https://obgyn.onlinelibrary.w

iley.com
/doi/10.1002/pd.6411, W

iley O
nline L

ibrary on [12/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TAB L E 5 Fetal neurosonography.

Author

year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Di Vece

2022

6 fetuses 21–39 weeks GA The authors proposed a

regression CNN using

image features to

estimate the six‐
dimensional pose of

arbitrarily oriented US

planes relative to the

fetal brain center. The

network was trained on

images acquired from

phantom 3D US volumes

and fine‐tuned using real

ultrasound data. Training

data was generated by

slicing US volumes into

imaging planes in Unity at

random coordinates and

more densely around the

standard transventricular

plane

To build an automated

ultrasound plane

localization system of

fetal head images for

3D visualization,

training, and guidance

With phantom data, the

median errors were

0.90 mm/1.17° and

0.44 mm/1.21° for

random planes and

planes close to the

transventricular one,

respectively. With real

data, using a different

fetus with the same

gestational age, these

errors were

11.84 mm/25.17°. The

authors concluded

that good accuracy

was achieved on

phantom experiments

but errors remained

high on real data

Hesse 2022 278 images 18–26 weeks GA, no

congenital

malformations

A CNN was developed

composed of multi‐label
3D U‐Net with batch

normalization for the

automated segmentation

of the CP, LPVH, CSPV,

and CB from 3D

ultrasound

To accurately segment the

CP, LPVH, CSPV, and

CB in 3D US image

volumes during the

second trimester using

a minimal number of

voxel‐wise
annotations

The study demonstrated

the feasibility of

subcortical

segmentation in 3D US

using deep learning,

and shows that

volumetric measures

obtained from these

models can be used to

obtain an improved

understanding of

subcortical growth

during gestation

Lin 2022 16,297 pregnancies

(43,890 images)

166 pregnancies

(169 videos)

Normal fetuses and

fetuses with CNS

malformation between

18 and 40 gestational

weeks

The authors developed and

validated an AI system,

the PAICS, to detect nine

specific intracranial‐
malformation patterns in

standard sonographic

reference planes of the

fetal central nervous

system for use during live

scanning

To develop an AI system

that can detect

congenital central

nervous system

malformations

The system was able to

identify intracranial

image patterns with an

AUC of 0.981 (95% CI,

0.974–0.988) in the

real‐time scan setting

The performance of the

PAICS was similar to

that of expert

operators but required

less time (0.025 s per

image for PAICS vs.

4.4 s for experts

<0.001)

Chen 2020 500 test images NR The authors proposed a

computer‐aided detection
framework for automatic

measurement of fetal LV

in 2D US images. A deep

convolutional network

was trained on 2400

images of LVs to perform

pixel‐wise segmentation.
Then, the number of PPC

was obtained via

morphological operations

To assess the reliability

and efficacy of the

proposed framework

for automatic fetal LV

measurement by

comparing automated

measurements to

those obtained by

three experienced

sonographers

The system had a mean

absolute error of

1.8 � 3.4 mm for LV

measurement

compared to

sonographers

measurements

(Continues)

HORGAN ET AL. - 1199

 10970223, 2023, 9, D
ow

nloaded from
 https://obgyn.onlinelibrary.w

iley.com
/doi/10.1002/pd.6411, W

iley O
nline L

ibrary on [12/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T A B L E 5 (Continued)

Author

year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

guided by prior

knowledge, converted to

a physical length and used

to determine the

diameter of the LV by

employing the minimum

enclosing rectangle

method

Mariaci

2020

Dataset A: 5000 TC

and TV images

Second trimester

ultrasounds

The authors developed a

deep learning system to

evaluate a video of the

fetal head obtained by a

sonographer and the

system then identified

and measured the TCD

To propose an algorithm

that would allow the

estimation of

gestational age

through automatic

detection and

measurement of the

TCD

The authors found that

detection of the TCD

frame had a high‐class
probability. However,

there was also a high

positive rate and an

underestimation of

TCD by automated

measurement

Dataset B: 3736

images

Skelton

2020

164 cases 18 + 6–20 + 6 weeks GA

anomaly ultrasound

Two observers

retrospectively reviewed

standard fetal head

planes against predefined

image quality criteria.

Each fetus had 2D

manually‐acquired, 3D
operator‐selected and 3D
automatically‐acquired
images. The proportion of

adequate images from

each plane and modality,

and the number of

inadequate images per

plane was compared for

each method

This assess the image

quality of standard

fetal head planes

automatically‐
extracted from 3D

ultrasound fetal head

volumes using a

customized deep

learning algorithm

The authors found that

the 3D DL algorithm

could automatically

extract standard fetal

head planes from 3D‐
head volumes of

comparable quality to

operator‐selected
planes. However,

image quality in 3D is

inferior to

corresponding 2D

planes, likely due to

limitations with 3D‐
technology and

acquisition technique

Qu 2020 30,000 2D images

155 fetuses

16–34 weeks The authors evaluated a

system using differential

CNN and feature maps

that have predefined

parameters to analyze

patterns of pixels and

thus identifying 6 fetal

brain standard planes

To propose a differential

CNN to differentiate 6

fetal brain standard

planes from

nonstandard planes

The authors reported an

accuracy of 92.93%

Montero

2021

8747 images Images from 6 different

US machines, the

operators had similar

experience

Two GANs were trained, one

for TTA and TRV views,

to help deep learning

ultrasound classifiers by

focusing on the anatomy

of the fetal brain and

distinguishing TTA from

transventricular axial

plane images

To evaluate the

generation of

synthetic ultrasound

fetal brain images via

GANs and to apply

them to improve fetal

brain ultrasound plane

classification

TTA:

Fréchet inception

distance: 13.08

Precision: 0.6616

Recall: 0.3336

Transventricular:

Fréchet inception

distance: 17.4856

Precision: 0.6609

Recall: 0.2850

The authors concluded

that using data

generated by both

GANs and classical

augmentation

strategies resulted in
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T A B L E 5 (Continued)

Author

year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

increasing the

accuracy and area

under the curve score

Xie 2020 12,780 pregnancies

(10,251

normal & 2529

abnormal

pregnancies)

22 + 4–26 + 3 weeks GA Ultrasound images were

divided into 2 the training

and the testing scans

To examine the ability of

deep learning

mechanisms to

correctly identify

normal and abnormal

ultrasound scans of

the fetal brain in axial

planes

Results for the deep

learning model were

as follows:

Segmentation precision:

97.9%

Recall: 90.9%

DICE: 94.1%

Accuracy: 96.3%

Sensitivity: 96.9%

Specificity: 95.9%

AUC for ROC: 0.989

The deep learning algorithm

was trained to identify

the fetal brain, classify it

as normal or abnormal

and if abnormal, to locate

the lesion

The authors found

localization of lesions

occurred precisely in

61.6%, closely in

24.6% and were

irrelevant in 13.7%

Xie 2020 92,748 pregnant

women

Singleton or twin

pregnancies, 18–

32 weeks GA

A classifier was trained to

differentiate between

normal or abnormal

standard brain scans

(TRV or transcerebellar).

The craniocerebral

regions were segmented

and then distributed into

4 classes. Class activation

mapping was used then to

localize the abnormalities

(ventriculomegaly,

hydrocephalus, blake

pouch cyst, Dandy

Walker malformation and

cerebellar vermis

hypoplasia)

To develop a computer

aided diagnosis

algorithm to identify 5

fetal common brain

abnormalities

The authors achieved a

DICE score of 0.942

on craniocerebral

region segmentation,

an F1 score of 0.96 for
classification and a

mean IOU of 0.497 for

lesion localization

Alansary

2019

72 fetuses NR 72 fetal head US scans were

randomly divided into 21

and 51 images for training

and testing. The chosen

anatomic landmarks were

manually annotated by

clinical experts using

three orthogonal views

To assess the use the dual

DQN for fetal brain

anatomic landmark

location (right and left

cerebellar hemisphere,

CSP)

Duel DQN achieves the

best accuracy

detecting the right and

left CER points, while

DQN performs the

best for finding the

CSP

Sahli 2019 86 fetuses Group 1: Uncomplicated

cases

Group 2:

Dolichocephaly &

microcephaly

The first step includes

feature extraction (uses

US images of BPD, OFD

and HC). The second step

is feature classification

(machine learning method

to distinguish normal

from abnormal)

To propose a

computerized

diagnostic method

based on a SVM for

fetal head morphology

and classifications to

categorize participants

into 2 groups: Normal

and affected cases

Sensitivity: 0.9236

Specificity: 0.8403

Positive predictive value:

0.8160

Negative predictive value:

0.9260

Positive likelihood ratio:

6.9027

Negative likelihood ratio:

0.0943

(Continues)
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T A B L E 5 (Continued)

Author

year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

Both groups at

22 weeks 5 days GA

The authors concluded

that SVM is effective

in detecting accurate

fetal head diagnostics

Huang

2018

285 fetal brain

images

Healthy fetus, 20–

29 weeks gestation

View‐based projection

networks (VP‐Nets), uses
three view‐based CNNs,

to simplify 3D

localizations by directly

predicting 2D projections

of the key structures onto

three anatomical views

To assess the use of VP‐
Nets to detect multiple

fetal brain structures

simultaneously in 3D

fetal neurosonography

and to perform

measurements of the

CER and cisterna

magna. These

compared to manual

measurements to

assess accuracy

The model achieved an

IOU between

prediction and

annotation bounding

boxes of >62% on

average for

identification of brain

structures. On

average, automatic

measurements

correlated well with

manual ones, the

reported deviation is

<2.0 mm

Huang

2018

5 NR The AI model was designed

to automate structure

detection and

segmentation of fetal

brain structures based on

a region descriptor that

characterizes the shape

and local intensity

context of different

neurological structures

without explicit models

To automate US

segmentation of fetal

brain structures

(corpus callosum and

CP)

The results demonstrated

a high region

segmentation accuracy

(dice coefficient:

0.81 � 0.06% for

corpus callosum,

0.76 � 0.08% for CP)

relative to human

delineation

Namburete

2018

739 (599 images

for training and

140 for testing)

18–34 weeks GA healthy

and growth restricted

fetuses of different

ethnic and

geographical

backgrounds.

The authors developed a

deep learning system

using a fully CNN which

can segment and locate

the fetal brain and eye

sockets using both 2D

and 3D images

To prove that visual

interpretation of fetal

brain anatomy is

possible through fully

CNNs that aligns 3D

fetal

neurosonographic

images on the basis of

a predefined

coordinate system

Co‐alignment of 140 fetal

ultrasound images

resulted in high brain

overlap and low eye

localization error

Yaqub

2018

40 fetal SU of the

brain

19–24 weeks gestation The authors used a deep

learning method with the

use of random forests

framework and the use of

a classifier to detect

background, CP, PVC,

CSP and cerebellum

(CER)

To propose an automated

method to locate fetal

brain structures in 3D

US

3D detection accuracy:

CP: 100%

PVC: 80%

CSP: 90%

Cerebellum: 90%

Comparison between the

automatic detection

and the manual

delineation on each 2D

slice from the 3D

volumes showed

accuracies as follows:

92.9% CP, 91.1% PVC,

91.1% CSP, 91.9% CER

Yaqub

2017

19,838 images from

10,595 fetal

anatomy scans

Fetal anomaly scans A CNN classifier i was trained

and then tested to

segment the fetal head

region, estimate

To propose a deep

learning technique to

for:1) Identification of fetal

brain

The authors demonstrated

a 96.9% Dice

coefficient for

detection of head. The
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T A B L E 5 (Continued)

Author

year Number of patients Inclusion criteria

Description of artificial

intelligence Objective Results

magnification, and assess

for fetal brain symmetry

2) Detecting the struc-

tures under study

3) Learning the patterns

that allow the identifi-

cation of that plane

system agreed with

manual assessment of

head magnification in

94.1%, on brain

symmetry in 83.1%

and on CSP visibility in

86.8% and correct

assessment of head

orientation in 95.3%

Nambuerte

2014

447 participants 18–34 weeks healthy The authors developed a

framework that uses a

manifold surface

representation of the

fetal head which allows

for efficient sampling of

different developmental

stages. The bespoke

features capture

neurosonographic

patterns in 3D images,

and using a regression

forest classifier, to

characterize structural

brain development both

spatially and temporally

to capture the natural

variation

To propose an automated

framework for

predicting GA and

neuro developmental

maturation based on

3D ultrasound

Estimation of GA was

accurate within

6.1 days

Sofka 2014 2384 images for

training

16–35 weeks The authors developed a

novel Adaboost

framework for detecting

structures on 3D

ultrasound based on

sequential estimation

techniques. They used a

probabilistic model as the

solution for speckle noise,

signal dropout, shadows

and appearance variation

due to difference in GA

Three planes were evaluated

including the cerebellar,

thalamic and ventricular

and the midsagittal plane

To propose an automated

fetal head and brain

system for measuring

structures from 3D

ultrasound

The authors found an

average difference

between manual and

automatic

measurements was

<2 mm

Nambuerte

2013

60 2D images for

testing

10 fetuses for

training

25–34 weeks The authors evaluated a deep

learning framework that

includes local statistics

and shape information

about pixel clusters in an

image to evaluates the

performance of the

feature that segments

the cranial pixels in an

ultrasound image using a

random forest classifier

To propose a machine

learning framework

for segmentation of

the fetal cranium

The authors reported a

97.2% segmentation

accuracy

Abbreviations: 2D, two dimensional; 3D, three dimensional; AUC, area under the curve; BPD, biparietal diameter; CB, cerebellum; CI, confidence

interval; CNNs, convolutional neural networks; CP, choroid plexus; CSP, cavum septum pellucidum; CSPV, cavum septum pellucidum et vergae; DQN,

deep Q networks; GA, gestational age; GANs, generative adversarial networks; HC, head circumference; IOU, intersection over union; LPVH, lateral

posterior ventricle horns; LV, lateral ventricles; NR, not reported; OFD, occipitofrontal diameter; PAICS, prenatal ultrasound diagnosis artificial

intelligence conduct system; PPC, pixels per centimeter; PVC, posterior ventricle cavity; SVM, support vector machine; TCD, transcerebellar diameter;

TRV, transventricular; TTA, transthalamic; US, ultrasound.
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TAB L E 6 Anatomy ultrasound.

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

Matthew

2021

23 18–20 + 6 routine

fetal scans,

gestational age

between 20 and

24

The 13 standard planes

during each scan were:

Transventricular brain;

transcerebellar brain;

abdominal

circumference; femur

length view; facial profile;

lips and nose; right and

left outflow tract; four

chamber view; three

vessel trachea view;

kidneys; sagittal spine;

coronal spine. During AI‐
assisted examinations,

the sonographer scanned

the fetus until they were

satisfied that a

comprehensive visual

assessment had been

completed. This was in

combination with

confirmation that the

required planes had been

captured (i.e. green

traffic lights by the AI

system). During this scan,

the automated tools

capture the 13 standard

views and the fetal

biometry

To pilot automation of

anomaly scan using AI

tools and assess the

efficiency and quality of

fetal ultrasound in

comparison with

traditional manual scan

Scan times were 34.7%

shorter using AI

assistance. Completeness

of four core fetal views:

AI assisted report

included 93% of the

required views while the

manual report had 98%.

Completeness of the 13

standard views: 73% for

AI and 98% for manual

report. The authors

found automatically

extracted images had

better quality than the

manual scans

Schlemper

2019

2694 2D

ultrasound

examinations

18–22 weeks GA The authors developed a

novel AG model for

image analysis that

automatically learns to

focus on target

structures of varying

shapes and sizes which

can be incorporated into

CNNs

Attention model was used

for fetal ultrasound

screening of:

Brain, profile, lips, abdomen,

kidneys, femur, spine,

4CH, 3VV, RVOT, LVOT

To propose a novel attention

gate model that is easily

incorporated into

segmentation and

classification

architectures

Precision increased by 5%

for kidney, fetal profile

and spine, 3% for cardiac

views (4CH, 3VV) which

the authors noted was an

improvement in precision

and recall compared to

sononet

Sharma 2019 25 full length

scans

18–22 weeks GA The authors evaluated the

use of AI system to

comprehensively analyze

and quantify operator

clinical workflow in a

spatio‐temporal context,
that is, the type, duration

and sequence of scanned

anatomical structures

and activities, in order to

explore intra‐ and inter‐
operator correlation or

variability

To compare several deep

learning architectures

and propose methods for

comprehensive 2D+
spatio‐temporal
description in fetal

anomaly US video scans

The authors noted that

automated partitioning

and characterization on

unlabeled full‐length
video scans showed high

correlation (ρ = 0.95,

p = 0.0004) with

workflow statistics of

manually labeled videos,

suggesting practicality of

proposed methods
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T A B L E 6 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

Sridar 2018 4074 2D images

(3109 for

training and

965 for

testing)

NR The authors proposed a

method to automatically

classify 14 different fetal

structures in 2‐D fetal

ultrasound images by

using information from

both cropped regions of

fetal structures and the

whole image. The model

used two feature

extractors by fine‐tuning
pre‐trained CNN with

the whole ultrasound

fetal images and the

discriminant regions of

the fetal structures found

in the whole image

14 structures were looked at

including abdomen, arm,

3‐vessel view, LVOT and

RVOT, cord insertion,

face, femur, humerus,

foot, genitals, head,

heart, kidney, leg, spine,

and hand

To present a method to

classify 14 different fetal

structures in 2D fetal

ultrasound images

The system achieved a mean

accuracy of 97.05%,

mean precision of

76.47% and mean recall

of 75.41%. The Cohen k
of 0.72 revealed the

highest agreement

between the ground

truth and the proposed

method. The superiority

of the proposed method

over the other non‐
fusion‐based methods is

statistically significant

(p < 0.05)

Baumgartner

2017

2694 2D

ultrasound

exams

18–22 weeks

gestation

A CNN was created to

automatically detect 13

fetal standard views (in

accordance with the UK

mid pregnancy

ultrasound guidelines) in

freehand 2‐D ultrasound

data as well as provide a

localization of the fetal

structures via a bounding

box

To assess the accuracy of the

CNN to accurately detect

the standard 2D views in

real time using only weak

supervision

The model achieved an

average F1‐score of
0.798 in a realistic

classification experiment

modeling real‐time
detection, and obtained a

90.09% accuracy for

retrospective frame

retrieval. An accuracy of

77.8% was achieved on

the localization task

Chen 2017 1231 videos 18–40 weeks The authors presented a

composite neural

network framework that

specializes in deep CNN

and recurrent neural

networks that can

identify the different

planes from fetal US

videos through multitask

learning. Distinct from

conventional way that

devise hand‐crafted
visual features for

detection, the framework

explores in‐ and
between‐plane feature
learning with a novel

composite framework of

the convolutional and

recurrent neural

networks

To propose a new model that

combines multi task

learning, deep learning

and sequence learning

(RNN) model to identify

the following planes:

FASP

FFASP

FFVSP

In the testing phase, the T‐
RNN identified the

standard planes in

<1 min from a video

Abbreviations: 2D, two dimensional; 3VV, three vessel view; 4CH, four chamber; AG, attention gate; AI, artificial intelligence; CNN, convolutional neural

network; FASP, fetal abdominal standard plane; FFASP, fetal face axial standard plane; FFVSP, fetal four chamber view standard plane; GA, gestational

age; LVOT, left ventricular outflow tract; RVOT, right ventricular outflow tract.
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TAB L E 7 Other uses of obstetric ultrasound.

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

Ghi 2022 1219 women Singleton pregnancy,

≥37 weeks, non‐
anomalous fetus, 2nd

stage of labor, cephalic

One sonographic image of

the fetal head was then

acquired in an axial

plane using

transperineal

ultrasound and saved

for later offline

analysis. Using the

transabdominal

sonographic diagnosis

as the gold standard, a

ML algorithm based on

a pattern‐recognition
feed‐forward neural

network was trained

on the transperineal

images to discriminate

between OA and non‐
OA positions

To describe a ML

algorithm for the

automatic recognition

of fetal head position

using transperineal

ultrasound during the

second stage of labor

and to describe its

performance in

differentiating

between occiput

anterior and non‐OA
positions.

The ML‐based algorithm

correctly classified the

fetal occiput position in

90.4% (357/395) of the

test dataset giving an

F1‐score of 88.7% and

a precision‐recall AUC
of 85.4%

Pradipta

2022

151 images 8–32 weeks GA This study proposed a new

feature extraction

method, the UCI. The

model consists of five

stages: Image

preprocessing, feature

extraction, feature

selection, oversampling

data using SMOTE, and

classification. Machine

learning method

observations were

then carried out

comprehensively on

five based classifiers:

Random forest, KNN,

decision tree, SVM,

Näıve Bayes, and

Multiclassifier

To classify the umbilical

cord based on

ultrasound images into

normocoiling,

hypocoiling and

hypercoiling

Random forest and

multiclassifier had the

highest accuracy,

precision, recall and F
measure

Random forest (SMOTE

400%): 96%, 95.3%,

96.3%, and 96%. Multi

ClassifierSummer21

(SMOTE 500%): 95.2%,

93.6%, 93.3%, and

93.3%

Cho 2021 255 20–36 + 6 weeks

gestation, absence of

oligohydramnios or

PPROM, age ≥19

A hierarchical deep‐
learning based method

was developed, which

considers clinicians'

anatomical knowledge

based approaches. The

key step is the

segmentation of the AF

pocket using a deep

learning network, AF‐
net which combined

three complementary

concepts: Atrous

convolution, multi‐
scale side‐input layer,
and side‐output layer

To compare AF‐net
amniotic fluid

measurements to those

obtained by physicians

AF‐net achieved a dice

similarity of

0.877 � 0.086 for AF

segmentation and

achieved a mean

absolute error of

2.666 � 2.986 and

mean relative error of

0.018 � 0.023 for AFI

value

Du 2021 548 fetuses 28–41 weeks GA, no

chromosome

abnormality or

congenital

Fetal‐lung image
acquisition was

achieved using a

transverse view of the

To analyze and compare,

using ultrasound‐based
radiomics technology,

fetal‐lung texture in

The overall performance

of the GDM and PE

prediction model was

superior to that of the
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T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

malformation, no

steroids received,

singleton, no additional

maternal medical

complications

fetal thorax at the level

of the 4‐chamber view
of the heart. Using

ultrasound‐based
radiomics technology

to analyze fetal‐lung
texture, fetal lungs

were grouped

according to whether

they were affected by

GDM or PE to see if

they could be

distinguished from

each other and from

fetal lungs of normal

pregnancies

pregnancies affected

by GDM or PE

compared to normal

pregnancies

GA prediction model,

with an area under the

receiver operating

characteristics curve of

0.95–0.99, sensitivity

of 74.5%–91.3%,

specificity of 75.7%–

88.4% and accuracy of

80.6%–86.4% in the

independent test set

Miyagi 2021 896 images in total Singleton fetus, 19–

38 weeks GA

4D images were collected

and classified into

seven categories; eye

blinking, mouthing,

face without any

expression, scowling,

smiling, tongue

expulsion, yawning. A

deep learning AI

classifier was created

that consisted of

convolutional neural

networks with L2

regularization to

obtain the probability

of predicting each

category of the fetal

face expression. 80%

of the data was used as

a training data set and

the remaining 20% as a

validation data set

The development of an AI

classifier to recognize

fetal facial expressions

that are considered

related to brain

development

The accuracy of the AI

fetal facial expression

classification for the

entire test data set was

0.985

Weerasinghe

2021

100 scans <18 years old singleton The authors assessed fully

convolutional

networks for

automated

segmentation of fetal

kidneys. The authors

used multiparametric

input fusion including

3D B‐mode and power

Doppler to improve

accuracy

To propose a method using

fully convolutional

networks for

automated kidney

segmentation

Early input‐level fusion
provided the best

segmentation

accuracy: Average DSC

of 0.81

Hausdorff distance of

8.96 mm, an

improvement of 0.06

DSC and reduction of

1.43 mm Hausdorff

distance compared to

baseline network

20–40 weeks

Burgos‐
Artizzu

2020

12,400 images

from 1792

patients

NR The authors evaluated two

simple classifiers that

are based on a learning

algorithm (boosting

algorithm)

2‐ CNN classifiers were

then trained on

ImageNet Large scale

To evaluate deep learning

classification

techniques in a real

maternal‐ fetal clinical
environment to

identify planes in

obstetric ultrasound

The authors demonstrated

similar performance

compared to humans

when classifying

common planes in fetal

ultrasound

(Continues)
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T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

Visual recognition

challenge to identify

the following planes:

Fetal abdomen, brain,

femur and thorax and

maternal cervical

length

Jiao 2020 45 scans NR The deep learning model is

based on a self‐
supervised learning

approach to learn

meaningful and

transferable

representations from

medical imaging video

without any type of

human annotation. The

model is forced to

address anatomy‐
aware tasks with free

supervision from the

data itself. The model

was designed to

correct the order of a

reshuffled video clip

and at the same time

predict the geometric

transformation applied

to the video clip

To assess the ability of a

deep learning model to

undergo self‐
supervised learning

using unlabeled data

without the need for

ground truth

annotations from

human experts

This self‐supervised
learning approach can

learn the

representations and

this also applies to

standard plane

detection and saliency

prediction

Precision 75.8 � 1.9

Recall: 76.4 � 2.7

F1 score 75.7 � 2.0

Best performance

compared to other

deep learning methods

like sono Net

Shozu 2020 256 cases 18–28 weeks GA The authors used a

multiframe method

(based on time series

data from ultrasound

videos) and a cylinder

method which uses the

shape of the thoracic

wall to provide

accurate segmentation

of the thoracic wall

Multiframe+ cylinder

method employs

predictions from CNN

models

To improve segmentation

of the thoracic wall

which is cylindrical in

shape

MFCY (multiframe+
cylinder method)

increased the mean

values of intersection

over union of thoracic

wall segmentation

from 0.448 to 0.493

for U‐Net and from

0.417 to 0.470 for

DeepLabv3+
U‐Net with MFCY better

values of intersection,

dice and recall but less

precision

Intersection: 0.493

Dice: 0.654

Precision: 0.596

Recall: 0.738

DeepLabv3+ with MFCY

better values of

intersection, dice and

recall but less precision

Intersection: 0.470

Dice: 0.633

Precision: 0.566

Recall: 0.729

Smail 2020 2420 images from

673 patients

Hydronephrosis on

ultrasound

To assess the use of deep

convolutional neural

networks to grade

hydronephrosis on

To prove that a deep

learning model is able

to depict the grades of

hydronephrosis on

94% of the images were

classified correctly or

within one grade. 51%

of the images were
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T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

ultrasound images

according to the

society of fetal urology

classification system

compared to experts

ultrasound at or very

close to experts

correctly predicted (f1:
0.49)

CNN had an average

accuracy of 78% and

F1: 0.78 for low versus

high grades accuracy of

71% and F1: 0.71 for

distinguishing between

grade 2 and 3

Xia 2020 7013 images form

1023 pregnant

women

Normal pregnancies

between 20 and

41 + 6 weeks

Class 1: 20–29 + 6 weeks

Class 2: 30–36 + 6 weeks

Class 3: 37–41 + 6 weeks

A convolutional neural

network was

established to extract

and classify different

ultrasound images of

the fetal lung in

relation to GA. This

system was then

validated by a 10 fold

cross validation

To create a grading model

for normal fetal lung

gestational age

through deep learning

mechanisms and to

validate this method as

well as assess its

potential in

determining fetal lung

maturity

The authors noted the

following results.

Sensitivity:
Class 1: 91.7%

Class 2: 69.8%

Class 3: 86.4%

Specificity
Class 1: 6.8%

Class 2: 90%

Class 3: 83.1%

Total accuracy: 83.38%
AUC

Class 1: 0.982

Class 2: 0.907

Class 3: 0.960

Yang 2020 2081 images for

training, 450

for validation,

and 727 for

testing

NR The authors used the deep

learning models

residual U‐net and
ASPP U‐net to improve
the accuracy of fetal

US segmentation

without increasing the

depth of the model

To propose a new method

to improve the

accuracy of fetal US

segmentation of CRL,

AC and FL

The authors found that the

proposed networks

could effectively

improve the

segmentation accuracy

of fetal US images. For

example, on the AC

dataset, the residual U‐
net performed superior

with improvement

from 0.8985 to 0.9241

in dice compared with

U‐net, while ASPP U‐
net further increases

to 0.9412. However,

the authors concluded

that automatic and

accurate segmentation

of fetal US images

remains challenging

due to a variety of

interference factors

Burgos‐
Artizzu

2019

790 fetal lung

images

Pregnancies between 24

and 38 + 6 weeks GA

in which an ultrasound

was obtained within

48 h of delivery,

maternal BMI <35, no
congenital

malformation

An axial section of the

fetal thorax at the level

of the four‐chamber
cardiac view is

obtained and images

were processed using

the quantusFLM 3.0,

which automatically

delineated a ROI in the

fetal lung and

calculated a NRM risk

score based on deep

learning techniques

To evaluate the

performance of a new

version of quantusFLM

software for prediction

of neonatal respiratory

morbidity by

ultrasound

QuantusFLM predicted

NRM with a sensitivity,

specificity, and positive

and negative predictive

value of 71.0%, 94.7%,

67.9%, and 95.4%,

respectively, with an

accuracy of 91.5%

which is similar to tests

based on amniotic fluid

and more accurate

than gestational age

alone

(Continues)
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T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

Chen 2019 2694 2D

ultrasound

exams

18–22 weeks gestation Training CNNs are often

limited by the

availability of an

adequate number of

labeled images to train

a model accurately. A

novel self‐supervised
learning strategy for

medical imaging is

proposed by the

authors to overcome

this limitation. Two

small patches of an

image are randomly

selected and swapped.

The CNN is then

trained to restore the

image back to its

original version

To evaluate a novel self‐
supervised learning

strategy based on

context restoration in

order to better exploit

unlabeled images to

improve the

performance of

machine learning

models

Context restoration

improved SonoNet

performance compared

to the original study by

Baumgartner et al.

with a precision of

80.6%, recall of 86%

and an F1‐score of
82.8%

Gomez 2019 8 images and 2

fetuses

Healthy fetuses The authors proposed an

image reconstruction

framework to combine

a large number of

overlapping image

patches into a fused

reconstruction of the

object of interest, that

is robust to

inconsistencies

between patches (e.g.

motion artifacts)

without explicitly

modeling them. The

authors proposed a

new method based on

a convolutional

variational

autoencoder (β‐VAE),
and compared it to

classical manifold

embedding techniques:

Linear

(MultiDimensional

scaling) and nonlinear

(Laplacian Eigenmaps)

To propose an image

reconstruction

framework and apply it

to whole‐fetus US
imaging

The authors concluded

that the β‐VAE method
outperformed all other

methods in terms of

preservation of patch

information and overall

image quality

Maraci 2017 323 videos >28 weeks gestation The authors developed an

image analysis

framework for linear

ultrasound videos to

allow less experienced

users of the US to

identify structures and

interpret images

particularly related to

fetal presentation and

the presence or

absence of a fetal

heartbeat

To develop a framework

for characterizing an

ultrasound video

obtained from a

predefined scan

protocol for

pregnancies

From a total of 129 unseen

videos in the test

dataset, 41 videos did

not contain the skull or

abdomen, which are

essential for the

detection of fetal

presentation

From the remaining 88

videos, the

presentation was

correctly identified in

76 videos sweeps

(83.4%)
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T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

For the detection of the

heartbeat an accuracy

of 93.1% was achieved

Li 2017 1300 images Fetal anomaly scans The data was fed to a

downscaled

convolution structure.

Then decoding was

done through learnable

convolution kernels.

Convolution layers

were added between

encoding and decoding

that then resulted in

classification of fetal

tissue and amniotic

fluid

To determine the

effectiveness of deep

learning methods on

segmentation of the

amniotic fluid and fetal

tissues based on

ultrasound images

The authors

demonstrated:

93% global accuracy

67% fetal body accuracy

78% amniotic fluid

accuracy

Zhen 2016 1735 images 20–36 weeks The authors used very

deep convolutional

networks to represent

fine grained details in

an US image

Very small convolution

filters were used to

improve the

performance of the

model

To propose a framework

to automatically detect

fetal facial standard

plane on US images

The authors noted the

following results:

Accuracy: 96.99%

True positive rate: 96.98%

False positive rate: 98.49%

Precision: 96.98%

Recall: 98.99%

Bonet‐Carne
2015

144 neonates 28–39 weeks gestation A computerized method,

termed quantusFLM,

based on texture

analysis and machine

learning algorithms

was trained to predict

neonatal respiratory

morbidity risk on fetal

lung ultrasound

images. QuantusFLM,

was then validated

blindly in neonates

using lung ultrasound

images obtained within

48 h of delivery

To develop and assess the

performance of

quantusFLM for

predicting neonatal

respiratory morbidity

based on quantitative

analysis of the fetal

lung by ultrasound

Among the 144 neonates,

there were 29 (20.1%)

cases of neonatal

respiratory morbidity.

Quantitative texture

analysis predicted

neonatal respiratory

morbidity with a

sensitivity, specificity,

positive predictive

value and negative

predictive value of

86.2%, 87.0%, 62.5%

and 96.2%,

respectively

Lei 2015 1753 images 20–36 weeks gestation Densely sampled RootSIFT

features are extracted

and then encoded by

FV. The Fisher network

with multi‐layer design
was developed to

extract spatial

information to boost

the classification

performance. Finally,

automatic recognition

of the fetal facial

standard planes is

implemented by a SVM

classifier based on the

SDCA algorithm

To propose a new

algorithm for the

detection of fetal facial

standard planes that

include axial, coronal,

and sagittal planes

The authors demonstrated

an accuracy of 93.27%

mAP of 99.19%

(Continues)
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T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

Yaqub 2015 29,858 images

from 2256

scans

Anomaly scans (18–

22 + 6 weeks)

The authors assessed the

use of guided random

forests for

identification of key

fetal anatomy and

image categorization.

Random forests

classifiers were taught

to extract regions

inside the images

where useful

structures exist. This

method also utilizes a

translation and

orientation method

that captures the

region at multiple

spatial resolutions. The

authors reported Top 1

and Top 2 accuracy for

the model. An image is

considered in TPtop2 if

its class is within the

top 2 probabilities of

the algorithm

To propose a new learning

method to categorize

unlabeled fetal

ultrasound images

Accuracy of the top 1

probability of the

algorithm is 75%

compared to top 2

accuracy of 91%

Lei 2014 486 images 20–36 weeks An automatic algorithm

was developed to

address the issue of

recognition of standard

planes in fetal

ultrasound. The dense

sampling feature

transform descriptor

(DSIFT) with

aggregating vector

method (i.e. FV) was

explored for feature

extraction. The

learning and

recognition of the

planes were

implemented by SVM

classifier

To propose an automatic

algorithm for the

recognition of standard

planes (i.e. axial,

coronal and sagittal

planes) in the fetal

ultrasound images

High recognition accuracy

was demonstrated with

mAP >95% for coronal

and >84% mAP for

axial planes

Ni 2014 1995 images for

training

223 videos for

testing

18–40 weeks GA The region of the abdomen

was detected by RF

classifiers and three

component detectors

were trained using the

RFs to locate the SB,

UV and SP. A SVM was

then used to analyze

the component

detectors and give the

conclusion of FASP or

non‐FASP

To develop a model that

can properly detect

key anatomical

structures, handle

anatomic variations,

and have the ability to

exclude regions that

might appear similar to

the key anatomic

structures

The UV results were the

best followed by the

SB, SP and ROI. This

result may be due to

the distinctive

appearance of the UV.

The AUC values for all

the classifiers were

above 0.98

Cobo 2012 957 images 20–40 weeks The authors evaluated

automatic quantitative

ultrasound analysis

To evaluate the

reproducibility and

feasibility of a

The authors demonstrated

a strong correlation

with gestational age
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networks to automatically detect various cardiac views and distin-

guish between normal and abnormal on fetal echo images, with the

authors reporting an AUC of 0.99, a sensitivity 95% and a specificity

of 96%.77 In addition to shortening the learning curve for sonogra-

phers and physicians to become proficient at ultrasound, AI also has

the potential to improve efficiency by shortening scanning time.

Matthews et al. evaluated an AI system that provided feedback to the

sonographer during live scanning via a traffic light system to inform

the sonographer that the required anatomic views had been obtained

in addition to automatically measuring fetal biometry.105

Our review also highlights the potential of AI in low resource

settings. Several studies focused on AI detection of placental location

and categorization of the placenta as normal, low‐lying, or placenta
previa.27,28 Arroyo et al. assessed the use of AI for fetal presentation,

placental location and fetal biometry for estimation of gestational age

using standardized ultrasound sweeps obtained in the absence of

trained sonographers.33 Timely identification and transfer of patients

with placenta previa and other placental disorders have the potential

to significantly improve patient outcomes as rates of up to 50%

perinatal mortality have been described amongst patients with

antepartum bleeding in low income countries.139 Accurate assess-

ment of gestational age in resource limited settings also allows for

the potential transfer to facilities with higher levels of neonatal care

for preterm patients at risk of delivery.

AI may allow new uses of ultrasound in obstetrics, beyond the

capabilities of human experts. Nambuerete et al. developed an AI

system to predict gestational age and neurodevelopmental matura-

tion of the fetus from 3D images,94 whereas Burgos‐Artizzu et al.

assessed the automated analysis of fetal brain morphology on stan-

dard cranial ultrasound sections, to estimate the gestational age.58 It

remains to be seen if AI will lead to new methods of estimating

gestational age with increased accuracy compared with standard

fetal biometry. Several studies focused on fetal lung ultrasound for

assessment of fetal lung maturity and prediction of neonatal respi-

ratory morbidity.112,128 Recent literature has suggested the need for

a more judicious approach to administration of antenatal cortico-

steroids due to growing concerns about potential long‐term neuro-

developmental effects of in‐utero corticosteroid exposure.140,141

Perhaps AI will be able to predict those who will benefit most from

antenatal corticosteroids while minimizing unnecessary exposure. AI

in obstetric ultrasound may be useful to predict adverse pregnancy

outcomes, thus identifying patients requiring more intensive sur-

veillance. Looney et al. assessed automated placental volume in the

first trimester for the prediction of SGA neonates at birth and Gupta

et al. compared placental quantitative image texture throughout

pregnancy in patients with hypertensive disorders to controls with

normal pregnancy outcomes, demonstrating promising results for the

prediction of hypertensive disorders.24,31

T A B L E 7 (Continued)

Author year

Number of

patients Inclusion criteria

Description of artificial

intelligence Objective Results

software to extract

images and quantify

lung texture. Feature

transformation and a

regression model were

then used to correlate

the extracted image

with the gestational

age

quantitative

ultrasound analysis in

detecting fetal lung

texture in correlation

with gestational age

with a Pearson

correlation of 0.97

Feng 2009 1010 fetal images 21–40 weeks The authors used

constrained marginal

space learning for the

detection of the fetal

face, and a boosting

profile to refine the

image. An automatic

carving algorithm was

then used to remove

everything obstructing

the face

To propose a learning‐
based approach that

combines information

from 2D and 3D

images to detect fetal

face on 3D images

The authors demonstrated

a high detection

accuracy and the

system was able to

detect the fetal face in

1 s

Abbreviations: 3D, three dimensional; 4D, four dimensional; AC, abdominal circumference; AF, amniotic fluid; AFI, amniotic fluid index; AI, artificial

intelligence; ASPP, atrous spatial pyramid pooling; AUC, area under the curve; CNN, convolutional neural network; CRL, crown rump length; DSC, dice

similarity coefficient; FASP, fetal abdominal standard plane; FL, femur length; FV, Fisher vector; GA, gestational age; GDM, gestational diabetes mellitus;

KNN, K‐nearest neighbours; mAP, mean average precision; ML, machine learning; NR, not reported; OA, occipital anterior; PE, preeclampsia; PPROM,

preterm premature rupture of membranes; ROI, region of interest; RootSIFT, root scale invariant feature transform; SB, stomach bubble; SDCA,

stochastic dual coordinate ascent; SMOTE, synthetic minority oversampling technique; SP, spine; SVM, support vector machine; UCI, umbilical coiling

index; US, ultrasound; UV, umbilical vein.
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Our review has many strengths. To our knowledge, this is the

first scoping literature review of AI in obstetric ultrasound to date.

We have synthesized all published studies examining the use of AI in

obstetric ultrasound, providing a comprehensive overview of the

current capabilities, challenges and potential future uses of AI in

obstetric ultrasound. There are several limitations to this review.

Firstly, the heterogeneity of studies included in this review does not

allow meaningful comparison regarding which AI methods are supe-

rior for obstetric ultrasound. Furthermore, the majority of included

studies are retrospective in nature with very few prospective studies

to date examining AI in obstetric ultrasound. Therefore, it remains

unknown if AI in obstetric ultrasound will have the ability to improve

maternal and fetal outcomes in a real‐life setting.
The use of AI in obstetric ultrasound will likely increase in the

coming decades. Many of the latest ultrasound systems have inte-

grated intelligent applications, often to obtain measurements based

on standard plane detection of an image obtained by the sonogra-

pher. AI holds the potential to improve the ultrasound efficiency,

decrease interobserver variability, improve detection of congenital

malformations and shorten the training duration to become profi-

cient at obstetric ultrasound. Future research should focus on

determining the optimal AI techniques in obstetric ultrasound and

assessing if maternal and fetal outcomes are improved with the use

of AI in obstetric ultrasound.

TAB L E 8 Summary of studies examining the use of artificial
intelligence in obstetric ultrasound.

Study type
Number of
studies

First trimester ultrasound 11

Measurement of nuchal translucency 3

Detection of gestational sac 3

Detection of the mid‐sagittal plane 3

Fetal biometry 1

Measurement of cerebral cortex 1

Placenta ultrasound 8

Segmentation of the placenta only 2

First trimester placenta volume for the prediction of

SGA neonates

1

Categorization of placental location 1

Detection of placental location 1

Staging of placental maturity 1

Detection of lacunae 1

Comparison of placental texture throughout

pregnancy in patients with hypertensive

disorders to normotensive patients

1

Fetal biometry 47

Measurement of fetal biometry 10

Fetal head measurements 20

Assessment of fetal brain morphology for estimation

of gestational age

1

Femur length only 5

Abdominal circumference only 2

Detection of fetal abdominal standard plane 4

Various combinations of ≥2 fetal biometry

measurements

5

Fetal cardiac imaging 10

Detection of substructures of the heart to calculate

abnormality score

1

Detection of outflow tracts 1

Detection of standardized fetal heart views and

characterization as normal or abnormal

1

Assessment of the ventricular septum 1

Detection of four chamber view 3

Quality control of the four chamber view 1

Automatic segmentation of the fetal heart and lungs 1

Fetal neurosonography 20

Localization of planes in the fetal brain using 3D

volumes

3

Segmentation of intracranial structures or fetal

cranium

5

Detection of intracranial planes using 2D images 2

T A B L E 8 (Continued)

Study type

Number of

studies

Assessment of neurodevelopmental maturation 1

Automated detection and measurement of ≥1
intracranial structure

5

Detection of specified intracranial abnormalities 3

Classification of fetal head biometry as normal or

abnormal

1

Anatomical evaluation of the fetus 6

Detection of standard anatomic planes 4

Classification of fetal structures 1

Assessment of intra and inter observer variability

during morphology ultrasound

1

Other 25

Assessment of fetal lungs 4

Assessment of the ability of deep learning models to

undergo self‐supervised learning using fetal

images/video

3

Detection of fetal facial planes 2

Assessment of amniotic fluid 2

Other 13

Total 127

Abbreviations: 2D, two dimensional; 3D, three dimensional; SGA, small

for gestational age.
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