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Backgrouncl 
Electronic fetal monitoring is used in 
most US hospital births but has signifi­
cant limitations in achieving its intended 
goal of preventing intrapartum hypoxic­
ischemic injury. Novel deep learning 
techniques can improve complex data 
processing and pattern recognition in 
medicine. 

Objective 
This study aimed to apply deep 
learning approaches to develop and 
validate a model to predict fetal acid­
emia from electronic fetal monitoring 
data. 

Study Design 
The database was created using intra­
partum electronic fetal monitoring data 
from 2006 to 2020 from a large, multisite 
academic health system. Data were 
divided into training and testing sets 
with equal distribution of acidemic 
cases. Several different deep learning 
architectures were explored. The pri­
mary outcome was umbilical artery 
acidemia, which was investigated at 4 
clinically meaningful thresholds: 7.20, 
7.15, 7.10, and 7.05, along with base 
excess. The receiver operating charac­
teristic curves were generated with the 
area under the receiver operating char-
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acteristic assessed to determine the per­
formance of the models. External 
validation was performed using a pub­
licly available Czech database of elec­
tronic fetal monitoring data. 

Results 
A total of 124,777 electronic fetal 
monitoring files were available, of which 
77,132 had <30% missingness in the last 
60 minutes of the electronic fetal moni­
toring tracing. Of these, 21,041 were 
matched to a corresponding umbilical 
cord gas result, of which 10,182 were 
time-stamped within 30 minutes of the 
last electronic fetal monitoring reading 
and composed the final dataset. The 
prevalence rates of the outcomes in the 
data were 20.9% with a pH of <7.2, 9.l-% 
with a pH of <7.15, 3.3% with a pH of 
<7.10, and 1.3% with a pH of <7.05. 
The best performing model achieved an 
area under the receiver operating char­
acteristic of 0.85 at a pH threshold of 
<7.05. When predicting the joint 
outcome of both pH of <7.05 and base 
excess of less than -10 meq/L, an area 
under the receiver operating character­
istic of 0.89 was achieved. When pre­
dicting both pH of <7.20 and base excess 
of less than -10 meq/L, an area under 
the receiver operating characteristic, of 
0.87 was achieved. At a pH of <7.15 and 

a positive predictive value of 30%, the 
model achieved a sensitivity of 90% and 
a specificity of 48%. 

Co11cl1.1sio11 
The application of deep learning 
methods to intrapartum electronic fetal 
monitoring analysis achieves promising 
performance in predicting fetal acid­
emia. This technology could help 
improve the accuracy and consistency of 
electronic fetal monitoring interpreta­
tion (Figure). 
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FIGURE 
Receiver operating characteristic curves for the final deep learning models 
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From left to right, the pH threshold for classifying fetal acidemia increases from 7 .05 to 7.10, 7.15, and 7.20. The shaded area indicates the 95% 
confidence interval. 
McCoy. Deep learning to predict fetal acidemia. Am J Obstet Gynecol 2025. 
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